team14: verio - working version 1
Browse files- app.py +281 -195
- client_server/client.zip +3 -0
- matchers/filter blur/deployment/client.zip → client_server/server.zip +2 -2
- common.py +4 -1
- generate_deployment_files.py +1 -1
- input_examples/1.png +0 -0
- input_examples/2.png +0 -0
- input_examples/3.png +0 -0
- input_examples/4.png +0 -0
- input_examples/5.png +0 -0
- input_examples/ids/ID_5.jpg +3 -0
- input_examples/ids/ID_6.jpg +3 -0
- input_examples/ids/ID_7.jpg +3 -0
- input_examples/selfies/selfie_5.jpg +3 -0
- input_examples/selfies/selfie_6.jpg +3 -0
- input_examples/selfies/selfie_7.jpg +3 -0
- matchers.py +8 -14
- matchers/filter blur/deployment/circuit.mlir +0 -11
- matchers/filter blur/deployment/configuration.json +0 -22
- requirements.txt +5 -2
- server.py +29 -71
app.py
CHANGED
|
@@ -1,37 +1,49 @@
|
|
| 1 |
"""A local gradio app that detect matching images using FHE."""
|
| 2 |
|
| 3 |
-
from PIL import Image
|
| 4 |
import os
|
|
|
|
| 5 |
import shutil
|
| 6 |
-
import subprocess
|
| 7 |
import time
|
| 8 |
-
|
| 9 |
-
import numpy
|
| 10 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from itertools import chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
from common import (
|
| 14 |
-
AVAILABLE_MATCHERS,
|
| 15 |
CLIENT_TMP_PATH,
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
ENCRYPTED_REFERENCE_NAME,
|
| 19 |
-
SERVER_TMP_PATH,
|
| 20 |
-
EXAMPLES,
|
| 21 |
-
MATCHERS_PATH,
|
| 22 |
-
INPUT_SHAPE,
|
| 23 |
KEYS_PATH,
|
|
|
|
| 24 |
REPO_DIR,
|
|
|
|
| 25 |
SERVER_URL,
|
| 26 |
)
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Uncomment here to have both the server and client in the same terminal
|
| 30 |
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
| 31 |
time.sleep(3)
|
| 32 |
|
| 33 |
|
| 34 |
-
def decrypt_output_with_wrong_key(encrypted_image
|
| 35 |
"""Decrypt the encrypted output using a different private key."""
|
| 36 |
# Retrieve the matcher's deployment path
|
| 37 |
matcher_path = MATCHERS_PATH / f"{matcher_name}/deployment"
|
|
@@ -80,35 +92,31 @@ def shorten_bytes_object(bytes_object, limit=500):
|
|
| 80 |
return bytes_object[shift : limit + shift].hex()
|
| 81 |
|
| 82 |
|
| 83 |
-
def get_client(
|
| 84 |
"""Get the client API.
|
| 85 |
|
| 86 |
Args:
|
| 87 |
user_id (int): The current user's ID.
|
| 88 |
-
|
| 89 |
|
| 90 |
Returns:
|
| 91 |
FHEClient: The client API.
|
| 92 |
"""
|
| 93 |
-
return
|
| 94 |
-
MATCHERS_PATH / f"{matcher_name}/deployment",
|
| 95 |
-
matcher_name,
|
| 96 |
-
key_dir=KEYS_PATH / f"{matcher_name}_{user_id}",
|
| 97 |
-
)
|
| 98 |
|
| 99 |
|
| 100 |
-
def get_client_file_path(name, user_id
|
| 101 |
"""Get the correct temporary file path for the client.
|
| 102 |
|
| 103 |
Args:
|
| 104 |
name (str): The desired file name.
|
| 105 |
user_id (int): The current user's ID.
|
| 106 |
-
|
| 107 |
|
| 108 |
Returns:
|
| 109 |
pathlib.Path: The file path.
|
| 110 |
"""
|
| 111 |
-
return CLIENT_TMP_PATH / f"{name}
|
| 112 |
|
| 113 |
|
| 114 |
def clean_temporary_files(n_keys=20):
|
|
@@ -133,8 +141,8 @@ def clean_temporary_files(n_keys=20):
|
|
| 133 |
shutil.rmtree(key_dir)
|
| 134 |
|
| 135 |
# Get all the encrypted objects in the temporary folder
|
| 136 |
-
client_files = CLIENT_TMP_PATH.iterdir()
|
| 137 |
-
server_files = SERVER_TMP_PATH.iterdir()
|
| 138 |
|
| 139 |
# Delete all files related to the ids whose keys were deleted
|
| 140 |
for file in chain(client_files, server_files):
|
|
@@ -157,10 +165,11 @@ def keygen(matcher_name):
|
|
| 157 |
clean_temporary_files()
|
| 158 |
|
| 159 |
# Create an ID for the current user
|
| 160 |
-
user_id =
|
|
|
|
| 161 |
|
| 162 |
# Retrieve the client API
|
| 163 |
-
client = get_client(
|
| 164 |
|
| 165 |
# Generate a private key
|
| 166 |
client.generate_private_and_evaluation_keys(force=True)
|
|
@@ -172,7 +181,7 @@ def keygen(matcher_name):
|
|
| 172 |
|
| 173 |
# Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio
|
| 174 |
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
| 175 |
-
evaluation_key_path = get_client_file_path("evaluation_key", user_id
|
| 176 |
|
| 177 |
with evaluation_key_path.open("wb") as evaluation_key_file:
|
| 178 |
evaluation_key_file.write(evaluation_key)
|
|
@@ -180,18 +189,124 @@ def keygen(matcher_name):
|
|
| 180 |
return (user_id, True)
|
| 181 |
|
| 182 |
|
| 183 |
-
def
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
Args:
|
| 189 |
user_id (int): The current user's ID.
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
encrypted_image_name (str): how to name the encrypted image
|
| 193 |
-
to distinguish between the query and the reference images.
|
| 194 |
-
Defaults to "encrypted_image"
|
| 195 |
|
| 196 |
Returns:
|
| 197 |
(input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its
|
|
@@ -201,85 +316,75 @@ def encrypt(
|
|
| 201 |
if user_id == "":
|
| 202 |
raise gr.Error("Please generate the private key first.")
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
|
|
|
| 206 |
|
| 207 |
-
if input_image.shape[-1]
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
|
| 212 |
-
if
|
| 213 |
-
# Discarding alpha channel from images stored as Numpy arrays
|
| 214 |
-
# (reference https://stackoverflow.com/questions/35902302/discarding-alpha-channel-from-images-stored-as-numpy-arrays)
|
| 215 |
-
input_image = input_image[:, :, :3]
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
input_image_pil = Image.fromarray(input_image)
|
| 220 |
-
input_image_pil = input_image_pil.resize((INPUT_SHAPE[0], INPUT_SHAPE[1]))
|
| 221 |
-
input_image = numpy.array(input_image_pil)
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
# Retrieve the client API
|
| 224 |
-
client = get_client(
|
| 225 |
|
| 226 |
# Pre-process, encrypt and serialize the image
|
| 227 |
-
encrypted_image = client.
|
| 228 |
|
| 229 |
# Save encrypted_image to bytes in a file, since too large to pass through regular Gradio
|
| 230 |
# buttons, https://github.com/gradio-app/gradio/issues/1877
|
| 231 |
-
|
| 232 |
-
encrypted_image_name, user_id, matcher_name
|
| 233 |
-
)
|
| 234 |
|
| 235 |
-
with
|
| 236 |
encrypted_image_file.write(encrypted_image)
|
| 237 |
|
| 238 |
# Create a truncated version of the encrypted image for display
|
| 239 |
encrypted_image_short = shorten_bytes_object(encrypted_image)
|
| 240 |
|
| 241 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
|
| 244 |
-
def send_input(user_id
|
| 245 |
-
"""Send the encrypted input
|
| 246 |
|
| 247 |
Args:
|
| 248 |
user_id (int): The current user's ID.
|
| 249 |
-
|
| 250 |
"""
|
| 251 |
# Get the evaluation key path
|
| 252 |
-
evaluation_key_path = get_client_file_path("evaluation_key", user_id
|
| 253 |
|
| 254 |
if user_id == "" or not evaluation_key_path.is_file():
|
| 255 |
raise gr.Error("Please generate the private key first.")
|
| 256 |
|
| 257 |
-
|
| 258 |
-
ENCRYPTED_QUERY_NAME, user_id, matcher_name
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
encrypted_reference_image_path = get_client_file_path(
|
| 262 |
-
ENCRYPTED_REFERENCE_NAME, user_id, matcher_name
|
| 263 |
-
)
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
if not encrypted_input_path.is_file():
|
| 270 |
-
raise gr.Error(
|
| 271 |
-
f"Please generate the private key and then encrypt an image first: {encrypted_input_path}"
|
| 272 |
-
)
|
| 273 |
|
| 274 |
# Define the data and files to post
|
| 275 |
data = {
|
| 276 |
"user_id": user_id,
|
| 277 |
-
"matcher": matcher_name,
|
| 278 |
}
|
| 279 |
|
| 280 |
files = [
|
| 281 |
-
("files", open(
|
| 282 |
-
("files", open(encrypted_reference_image_path, "rb")),
|
| 283 |
("files", open(evaluation_key_path, "rb")),
|
| 284 |
]
|
| 285 |
|
|
@@ -293,16 +398,15 @@ def send_input(user_id, matcher_name):
|
|
| 293 |
return response.ok
|
| 294 |
|
| 295 |
|
| 296 |
-
def run_fhe(user_id
|
| 297 |
-
"""Apply the
|
| 298 |
|
| 299 |
Args:
|
| 300 |
user_id (int): The current user's ID.
|
| 301 |
-
|
| 302 |
"""
|
| 303 |
data = {
|
| 304 |
"user_id": user_id,
|
| 305 |
-
"matcher": matcher_name,
|
| 306 |
}
|
| 307 |
|
| 308 |
# Trigger the FHE execution on the encrypted image previously sent
|
|
@@ -314,25 +418,22 @@ def run_fhe(user_id, matcher_name):
|
|
| 314 |
if response.ok:
|
| 315 |
return response.json()
|
| 316 |
else:
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
raise gr.Error("Please wait for the input images to be sent to the server.")
|
| 320 |
|
| 321 |
|
| 322 |
-
def get_output(user_id
|
| 323 |
-
"""Retrieve the encrypted output.
|
| 324 |
|
| 325 |
Args:
|
| 326 |
user_id (int): The current user's ID.
|
| 327 |
-
|
| 328 |
|
| 329 |
Returns:
|
| 330 |
-
|
| 331 |
|
| 332 |
"""
|
| 333 |
data = {
|
| 334 |
"user_id": user_id,
|
| 335 |
-
"matcher": matcher_name,
|
| 336 |
}
|
| 337 |
|
| 338 |
# Retrieve the encrypted output image
|
|
@@ -346,38 +447,40 @@ def get_output(user_id, matcher_name):
|
|
| 346 |
|
| 347 |
# Save the encrypted output to bytes in a file as it is too large to pass through regular
|
| 348 |
# Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
| 349 |
-
encrypted_output_path = get_client_file_path(
|
| 350 |
-
ENCRYPTED_OUTPUT_NAME, user_id, matcher_name
|
| 351 |
-
)
|
| 352 |
|
| 353 |
with encrypted_output_path.open("wb") as encrypted_output_file:
|
| 354 |
encrypted_output_file.write(encrypted_output)
|
| 355 |
|
| 356 |
-
# Decrypt the
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
)
|
| 360 |
|
| 361 |
-
return {
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
else:
|
| 369 |
raise gr.Error("Please wait for the FHE execution to be completed.")
|
| 370 |
|
| 371 |
|
| 372 |
-
def decrypt_output(user_id
|
| 373 |
"""Decrypt the result.
|
| 374 |
|
| 375 |
Args:
|
| 376 |
user_id (int): The current user's ID.
|
| 377 |
-
|
| 378 |
|
| 379 |
Returns:
|
| 380 |
-
(output_image, False, False) ((Tuple[
|
| 381 |
well as two booleans used for resetting Gradio checkboxes
|
| 382 |
|
| 383 |
"""
|
|
@@ -385,9 +488,7 @@ def decrypt_output(user_id, matcher_name):
|
|
| 385 |
raise gr.Error("Please generate the private key first.")
|
| 386 |
|
| 387 |
# Get the encrypted output path
|
| 388 |
-
encrypted_output_path = get_client_file_path(
|
| 389 |
-
ENCRYPTED_OUTPUT_NAME, user_id, matcher_name
|
| 390 |
-
)
|
| 391 |
|
| 392 |
if not encrypted_output_path.is_file():
|
| 393 |
raise gr.Error("Please run the FHE execution first.")
|
|
@@ -397,25 +498,28 @@ def decrypt_output(user_id, matcher_name):
|
|
| 397 |
encrypted_output = encrypted_output_file.read()
|
| 398 |
|
| 399 |
# Retrieve the client API
|
| 400 |
-
client = get_client(
|
| 401 |
|
| 402 |
# Deserialize, decrypt and post-process the encrypted output
|
| 403 |
-
decrypted_ouput = client.
|
| 404 |
|
| 405 |
print(f"Decrypted output: {decrypted_ouput.shape=}")
|
|
|
|
| 406 |
|
| 407 |
-
|
|
|
|
|
|
|
| 408 |
|
| 409 |
|
| 410 |
def resize_img(img, width=256, height=256):
|
| 411 |
"""Resize the image."""
|
| 412 |
-
if img.dtype !=
|
| 413 |
-
img = img.astype(
|
| 414 |
img_pil = Image.fromarray(img)
|
| 415 |
# Resize the image
|
| 416 |
resized_img_pil = img_pil.resize((width, height))
|
| 417 |
-
# Convert back to a
|
| 418 |
-
return
|
| 419 |
|
| 420 |
|
| 421 |
demo = gr.Blocks()
|
|
@@ -428,9 +532,9 @@ with demo:
|
|
| 428 |
<!--p align="center">
|
| 429 |
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
| 430 |
</p-->
|
| 431 |
-
<h1 align="center">
|
| 432 |
-
<h1 align="center">Biometric image matching Using Fully Homomorphic Encryption</h1>
|
| 433 |
<p align="center">
|
|
|
|
| 434 |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
|
| 435 |
—
|
| 436 |
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
|
|
@@ -447,11 +551,11 @@ with demo:
|
|
| 447 |
|
| 448 |
gr.Markdown("## Client side")
|
| 449 |
gr.Markdown("### Step 1: Upload input images. ")
|
| 450 |
-
gr.Markdown(
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
)
|
| 455 |
gr.Markdown("The query image to certify.")
|
| 456 |
with gr.Row():
|
| 457 |
input_query_img = gr.Image(
|
|
@@ -463,8 +567,8 @@ with demo:
|
|
| 463 |
interactive=True,
|
| 464 |
)
|
| 465 |
|
| 466 |
-
|
| 467 |
-
examples=
|
| 468 |
inputs=[input_query_img],
|
| 469 |
examples_per_page=5,
|
| 470 |
label="Examples to use.",
|
|
@@ -480,28 +584,28 @@ with demo:
|
|
| 480 |
interactive=True,
|
| 481 |
)
|
| 482 |
|
| 483 |
-
|
| 484 |
-
examples=
|
| 485 |
inputs=[input_reference_img],
|
| 486 |
examples_per_page=5,
|
| 487 |
label="Examples to use.",
|
| 488 |
)
|
| 489 |
|
| 490 |
-
gr.Markdown("### Step 2: Choose your matcher.")
|
| 491 |
-
matcher_name = gr.Dropdown(
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
)
|
| 497 |
-
|
| 498 |
-
gr.Markdown("#### Notes")
|
| 499 |
-
gr.Markdown(
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
)
|
| 505 |
|
| 506 |
gr.Markdown("### Step 3: Generate the private key.")
|
| 507 |
keygen_button = gr.Button("Generate the private key.")
|
|
@@ -510,35 +614,27 @@ with demo:
|
|
| 510 |
keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False)
|
| 511 |
|
| 512 |
user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
|
| 513 |
-
encrypted_query_image = gr.Textbox(
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
)
|
| 520 |
-
encrypted_reference_image = gr.Textbox(
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
)
|
| 527 |
-
|
| 528 |
-
gr.Markdown("### Step 4: Encrypt the images using FHE.")
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
with gr.Row():
|
| 532 |
-
encrypted_input_query = gr.Textbox(
|
| 533 |
-
label="Encrypted input query representation:",
|
| 534 |
-
max_lines=2,
|
| 535 |
-
interactive=False,
|
| 536 |
-
)
|
| 537 |
|
| 538 |
-
encrypt_reference_button = gr.Button("Encrypt the reference image using FHE.")
|
| 539 |
with gr.Row():
|
| 540 |
-
|
| 541 |
-
label="Encrypted input
|
| 542 |
max_lines=2,
|
| 543 |
interactive=False,
|
| 544 |
)
|
|
@@ -596,14 +692,14 @@ with demo:
|
|
| 596 |
with gr.Row():
|
| 597 |
original_query_image = gr.Image(
|
| 598 |
input_query_img.value,
|
| 599 |
-
label=f"Input query image
|
| 600 |
interactive=False,
|
| 601 |
height=256,
|
| 602 |
width=256,
|
| 603 |
)
|
| 604 |
original_reference_image = gr.Image(
|
| 605 |
input_reference_img.value,
|
| 606 |
-
label=f"Input reference image
|
| 607 |
interactive=False,
|
| 608 |
height=256,
|
| 609 |
width=256,
|
|
@@ -619,46 +715,36 @@ with demo:
|
|
| 619 |
# Button to generate the private key
|
| 620 |
keygen_button.click(
|
| 621 |
keygen,
|
| 622 |
-
inputs=[
|
| 623 |
outputs=[user_id, keygen_checkbox],
|
| 624 |
)
|
| 625 |
|
| 626 |
# Button to encrypt input query on the client side
|
| 627 |
-
|
| 628 |
encrypt,
|
| 629 |
-
inputs=[user_id, input_query_img,
|
| 630 |
-
outputs=[original_query_image,
|
| 631 |
-
)
|
| 632 |
-
|
| 633 |
-
# Button to encrypt input reference on the client side
|
| 634 |
-
encrypt_reference_button.click(
|
| 635 |
-
encrypt,
|
| 636 |
-
inputs=[user_id, input_reference_img, matcher_name, encrypted_reference_image],
|
| 637 |
-
outputs=[original_reference_image, encrypted_input_reference],
|
| 638 |
)
|
| 639 |
|
| 640 |
# Button to send the encodings to the server using post method
|
| 641 |
-
send_input_button.click(
|
| 642 |
-
send_input, inputs=[user_id, matcher_name], outputs=[send_input_checkbox]
|
| 643 |
-
)
|
| 644 |
|
| 645 |
# Button to send the encodings to the server using post method
|
| 646 |
-
execute_fhe_button.click(
|
| 647 |
-
run_fhe, inputs=[user_id, matcher_name], outputs=[fhe_execution_time]
|
| 648 |
-
)
|
| 649 |
|
| 650 |
# Button to send the encodings to the server using post method
|
| 651 |
get_output_button.click(
|
| 652 |
get_output,
|
| 653 |
-
inputs=[user_id
|
| 654 |
outputs=[encrypted_output_representation],
|
| 655 |
)
|
| 656 |
|
| 657 |
# Button to decrypt the output on the client side
|
| 658 |
decrypt_button.click(
|
| 659 |
decrypt_output,
|
| 660 |
-
inputs=[user_id
|
| 661 |
-
outputs=[output_result,
|
|
|
|
| 662 |
)
|
| 663 |
|
| 664 |
gr.Markdown(
|
|
|
|
| 1 |
"""A local gradio app that detect matching images using FHE."""
|
| 2 |
|
|
|
|
| 3 |
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
import shutil
|
|
|
|
| 6 |
import time
|
| 7 |
+
from typing import Tuple
|
|
|
|
| 8 |
import requests
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
import subprocess
|
| 13 |
+
import gradio as gr
|
| 14 |
from itertools import chain
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import matplotlib.image as img
|
| 17 |
+
import numpy as np
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import torch
|
| 20 |
+
import torchvision.transforms as transforms
|
| 21 |
+
import torchvision.models as models
|
| 22 |
+
import cv2
|
| 23 |
+
from facenet_pytorch import InceptionResnetV1
|
| 24 |
+
from concrete.ml.deployment import FHEModelClient, FHEModelServer
|
| 25 |
+
from client_server_interface import FHEClient
|
| 26 |
|
| 27 |
from common import (
|
|
|
|
| 28 |
CLIENT_TMP_PATH,
|
| 29 |
+
ID_EXAMPLES,
|
| 30 |
+
SELFIE_EXAMPLES,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
KEYS_PATH,
|
| 32 |
+
MATCHERS_PATH,
|
| 33 |
REPO_DIR,
|
| 34 |
+
SERVER_TMP_PATH,
|
| 35 |
SERVER_URL,
|
| 36 |
)
|
| 37 |
+
|
| 38 |
+
MODEL_PATH = "client_server"
|
| 39 |
+
# CLIENT_TMP_PATH = "client_tmp"
|
| 40 |
|
| 41 |
# Uncomment here to have both the server and client in the same terminal
|
| 42 |
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
| 43 |
time.sleep(3)
|
| 44 |
|
| 45 |
|
| 46 |
+
def decrypt_output_with_wrong_key(encrypted_image):
|
| 47 |
"""Decrypt the encrypted output using a different private key."""
|
| 48 |
# Retrieve the matcher's deployment path
|
| 49 |
matcher_path = MATCHERS_PATH / f"{matcher_name}/deployment"
|
|
|
|
| 92 |
return bytes_object[shift : limit + shift].hex()
|
| 93 |
|
| 94 |
|
| 95 |
+
def get_client():
|
| 96 |
"""Get the client API.
|
| 97 |
|
| 98 |
Args:
|
| 99 |
user_id (int): The current user's ID.
|
| 100 |
+
filter_name (str): The filter chosen by the user
|
| 101 |
|
| 102 |
Returns:
|
| 103 |
FHEClient: The client API.
|
| 104 |
"""
|
| 105 |
+
return FHEModelClient(MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
+
def get_client_file_path(name, user_id):
|
| 109 |
"""Get the correct temporary file path for the client.
|
| 110 |
|
| 111 |
Args:
|
| 112 |
name (str): The desired file name.
|
| 113 |
user_id (int): The current user's ID.
|
| 114 |
+
filter_name (str): The filter chosen by the user
|
| 115 |
|
| 116 |
Returns:
|
| 117 |
pathlib.Path: The file path.
|
| 118 |
"""
|
| 119 |
+
return CLIENT_TMP_PATH / f"{name}_embedding_{user_id}"
|
| 120 |
|
| 121 |
|
| 122 |
def clean_temporary_files(n_keys=20):
|
|
|
|
| 141 |
shutil.rmtree(key_dir)
|
| 142 |
|
| 143 |
# Get all the encrypted objects in the temporary folder
|
| 144 |
+
client_files = Path(CLIENT_TMP_PATH).iterdir()
|
| 145 |
+
server_files = Path(SERVER_TMP_PATH).iterdir()
|
| 146 |
|
| 147 |
# Delete all files related to the ids whose keys were deleted
|
| 148 |
for file in chain(client_files, server_files):
|
|
|
|
| 165 |
clean_temporary_files()
|
| 166 |
|
| 167 |
# Create an ID for the current user
|
| 168 |
+
user_id = np.random.randint(0, 2**32)
|
| 169 |
+
# user_id = 298147048
|
| 170 |
|
| 171 |
# Retrieve the client API
|
| 172 |
+
client = get_client()
|
| 173 |
|
| 174 |
# Generate a private key
|
| 175 |
client.generate_private_and_evaluation_keys(force=True)
|
|
|
|
| 181 |
|
| 182 |
# Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio
|
| 183 |
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
| 184 |
+
evaluation_key_path = get_client_file_path("evaluation_key", user_id)
|
| 185 |
|
| 186 |
with evaluation_key_path.open("wb") as evaluation_key_file:
|
| 187 |
evaluation_key_file.write(evaluation_key)
|
|
|
|
| 189 |
return (user_id, True)
|
| 190 |
|
| 191 |
|
| 192 |
+
def detect_and_crop_face(
|
| 193 |
+
image: str,
|
| 194 |
+
min_aspect_ratio: float = 0.5,
|
| 195 |
+
max_aspect_ratio: float = 1.5,
|
| 196 |
+
min_face_size: float = 0.01,
|
| 197 |
+
max_face_size: float = 0.6,
|
| 198 |
+
) -> Tuple[np.ndarray, Tuple[int, int, int, int], np.ndarray]:
|
| 199 |
+
# Read the image
|
| 200 |
+
# image = cv2.imread(image_path)
|
| 201 |
+
image_path = "test"
|
| 202 |
+
if image is None:
|
| 203 |
+
print(f"Failed to load image: {image_path}")
|
| 204 |
+
return None
|
| 205 |
+
|
| 206 |
+
# Print the image depth to debug
|
| 207 |
+
print(f"Image Depth: {image.dtype}, Shape: {image.shape}")
|
| 208 |
+
|
| 209 |
+
# Check if the image is of type CV_64F (float64) and convert to uint8
|
| 210 |
+
if image.dtype == np.float64:
|
| 211 |
+
print(f"Converting image from float64 to uint8 for {image_path}")
|
| 212 |
+
image = cv2.convertScaleAbs(image) # Scale and convert to 8-bit
|
| 213 |
+
|
| 214 |
+
elif image.dtype != np.uint8:
|
| 215 |
+
print(f"Converting image from {image.dtype} to uint8 for {image_path}")
|
| 216 |
+
image = cv2.convertScaleAbs(image) # Convert to 8-bit unsigned
|
| 217 |
+
|
| 218 |
+
# Convert to grayscale
|
| 219 |
+
try:
|
| 220 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 221 |
+
except cv2.error as e:
|
| 222 |
+
print(f"Error converting image to grayscale: {e} for {image_path}")
|
| 223 |
+
return None
|
| 224 |
+
|
| 225 |
+
# Load the face classifier
|
| 226 |
+
face_classifier = cv2.CascadeClassifier(
|
| 227 |
+
cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Detect faces
|
| 231 |
+
faces = face_classifier.detectMultiScale(
|
| 232 |
+
gray_image,
|
| 233 |
+
scaleFactor=1.1,
|
| 234 |
+
minNeighbors=5,
|
| 235 |
+
minSize=(int(image.shape[1] * 0.1), int(image.shape[0] * 0.1)),
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
valid_faces = []
|
| 239 |
+
for x, y, w, h in faces:
|
| 240 |
+
aspect_ratio = w / h
|
| 241 |
+
face_area = w * h
|
| 242 |
+
image_area = image.shape[0] * image.shape[1]
|
| 243 |
+
face_size_ratio = face_area / image_area
|
| 244 |
+
|
| 245 |
+
if (
|
| 246 |
+
min_aspect_ratio <= aspect_ratio <= max_aspect_ratio
|
| 247 |
+
and min_face_size <= face_size_ratio <= max_face_size
|
| 248 |
+
):
|
| 249 |
+
valid_faces.append((x, y, w, h))
|
| 250 |
+
|
| 251 |
+
if not valid_faces:
|
| 252 |
+
print(f"No suitable faces detected in {image_path}")
|
| 253 |
+
return None
|
| 254 |
+
|
| 255 |
+
# Sort faces by area (descending) and select the largest
|
| 256 |
+
valid_faces.sort(key=lambda f: f[2] * f[3], reverse=True)
|
| 257 |
+
(x, y, w, h) = valid_faces[0]
|
| 258 |
+
|
| 259 |
+
# Crop the face
|
| 260 |
+
try:
|
| 261 |
+
face_crop = image[
|
| 262 |
+
int(y - h * 0.1) : int(y + h * 1.1), int(x - w * 0.1) : int(x + w * 1.1)
|
| 263 |
+
]
|
| 264 |
+
if face_crop.size == 0:
|
| 265 |
+
print(f"Failed to crop face for {image_path}: resulting crop is empty")
|
| 266 |
+
return None
|
| 267 |
+
except Exception as e:
|
| 268 |
+
print(f"Error cropping face from {image_path}: {e}")
|
| 269 |
+
return None
|
| 270 |
+
|
| 271 |
+
# Convert to RGB for display
|
| 272 |
+
try:
|
| 273 |
+
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
|
| 274 |
+
except cv2.error as e:
|
| 275 |
+
print(f"Error converting cropped face to RGB: {e} for {image_path}")
|
| 276 |
+
return None
|
| 277 |
+
|
| 278 |
+
return face_crop_rgb, (x, y, w, h), image
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def preprocess_image(input_image):
|
| 282 |
+
# TODO change for facenet
|
| 283 |
+
model = InceptionResnetV1(pretrained="vggface2").eval()
|
| 284 |
+
input_image = np.array(input_image)
|
| 285 |
+
image_crop = detect_and_crop_face(image=input_image)
|
| 286 |
+
preprocess = transforms.Compose(
|
| 287 |
+
[
|
| 288 |
+
transforms.Resize((160, 160)), # Resize to 160x160 as required by the model
|
| 289 |
+
transforms.ToTensor(), # Convert to tensor
|
| 290 |
+
transforms.Normalize(
|
| 291 |
+
[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
| 292 |
+
), # Normalize to [-1, 1]
|
| 293 |
+
]
|
| 294 |
+
)
|
| 295 |
+
if image_crop[0] is not None:
|
| 296 |
+
img_tensor = preprocess(Image.fromarray(image_crop[0]))
|
| 297 |
+
img_tensor = img_tensor.unsqueeze(0)
|
| 298 |
+
with torch.no_grad():
|
| 299 |
+
embedding = model(img_tensor)
|
| 300 |
+
return embedding.numpy().flatten()
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def encrypt(user_id, selfie_image, id_image):
|
| 304 |
+
"""Encrypt the given image for a specific user and filter.
|
| 305 |
|
| 306 |
Args:
|
| 307 |
user_id (int): The current user's ID.
|
| 308 |
+
selfie_image (np.ndarray): The image to encrypt.
|
| 309 |
+
id_image (np.ndarray): The image to encrypt.
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
Returns:
|
| 312 |
(input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its
|
|
|
|
| 316 |
if user_id == "":
|
| 317 |
raise gr.Error("Please generate the private key first.")
|
| 318 |
|
| 319 |
+
# for input_image in [selfie_image, id_image]:
|
| 320 |
+
# if input_image is None:
|
| 321 |
+
# raise gr.Error("Please choose an image first.")
|
| 322 |
|
| 323 |
+
# if input_image.shape[-1] != 3:
|
| 324 |
+
# raise ValueError(
|
| 325 |
+
# f"Input image must have 3 channels (RGB). Current shape: {input_image.shape}"
|
| 326 |
+
# )
|
| 327 |
|
| 328 |
+
# Resize the image if it hasn't the shape (100, 100, 3)
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
+
selfie_image_orig = selfie_image.copy()
|
| 331 |
+
id_image_orig = id_image.copy()
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
+
selfie_image = Image.fromarray(selfie_image).convert("RGB")
|
| 334 |
+
id_image = Image.fromarray(id_image).convert("RGB")
|
| 335 |
+
embeddings_selfie = preprocess_image(selfie_image)
|
| 336 |
+
embeddings_id = preprocess_image(id_image)
|
| 337 |
+
X = np.concatenate((embeddings_selfie, embeddings_id))[np.newaxis, ...]
|
| 338 |
# Retrieve the client API
|
| 339 |
+
client: FHEModelClient = get_client()
|
| 340 |
|
| 341 |
# Pre-process, encrypt and serialize the image
|
| 342 |
+
encrypted_image = client.quantize_encrypt_serialize(X)
|
| 343 |
|
| 344 |
# Save encrypted_image to bytes in a file, since too large to pass through regular Gradio
|
| 345 |
# buttons, https://github.com/gradio-app/gradio/issues/1877
|
| 346 |
+
encrypted_embedding = get_client_file_path("encrypted_embedding", user_id)
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
with encrypted_embedding.open("wb") as encrypted_image_file:
|
| 349 |
encrypted_image_file.write(encrypted_image)
|
| 350 |
|
| 351 |
# Create a truncated version of the encrypted image for display
|
| 352 |
encrypted_image_short = shorten_bytes_object(encrypted_image)
|
| 353 |
|
| 354 |
+
return (
|
| 355 |
+
encrypted_image_short,
|
| 356 |
+
resize_img(selfie_image_orig),
|
| 357 |
+
resize_img(id_image_orig),
|
| 358 |
+
)
|
| 359 |
|
| 360 |
|
| 361 |
+
def send_input(user_id):
|
| 362 |
+
"""Send the encrypted input image as well as the evaluation key to the server.
|
| 363 |
|
| 364 |
Args:
|
| 365 |
user_id (int): The current user's ID.
|
| 366 |
+
filter_name (str): The current filter to consider.
|
| 367 |
"""
|
| 368 |
# Get the evaluation key path
|
| 369 |
+
evaluation_key_path = get_client_file_path("evaluation_key", user_id)
|
| 370 |
|
| 371 |
if user_id == "" or not evaluation_key_path.is_file():
|
| 372 |
raise gr.Error("Please generate the private key first.")
|
| 373 |
|
| 374 |
+
encrypted_input_path = get_client_file_path("encrypted_embedding", user_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
+
if not encrypted_input_path.is_file():
|
| 377 |
+
raise gr.Error(
|
| 378 |
+
"Please generate the private key and then encrypt an image first."
|
| 379 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
# Define the data and files to post
|
| 382 |
data = {
|
| 383 |
"user_id": user_id,
|
|
|
|
| 384 |
}
|
| 385 |
|
| 386 |
files = [
|
| 387 |
+
("files", open(encrypted_input_path, "rb")),
|
|
|
|
| 388 |
("files", open(evaluation_key_path, "rb")),
|
| 389 |
]
|
| 390 |
|
|
|
|
| 398 |
return response.ok
|
| 399 |
|
| 400 |
|
| 401 |
+
def run_fhe(user_id):
|
| 402 |
+
"""Apply the filter on the encrypted image previously sent using FHE.
|
| 403 |
|
| 404 |
Args:
|
| 405 |
user_id (int): The current user's ID.
|
| 406 |
+
filter_name (str): The current filter to consider.
|
| 407 |
"""
|
| 408 |
data = {
|
| 409 |
"user_id": user_id,
|
|
|
|
| 410 |
}
|
| 411 |
|
| 412 |
# Trigger the FHE execution on the encrypted image previously sent
|
|
|
|
| 418 |
if response.ok:
|
| 419 |
return response.json()
|
| 420 |
else:
|
| 421 |
+
raise gr.Error("Please wait for the input image to be sent to the server.")
|
|
|
|
|
|
|
| 422 |
|
| 423 |
|
| 424 |
+
def get_output(user_id):
|
| 425 |
+
"""Retrieve the encrypted output image.
|
| 426 |
|
| 427 |
Args:
|
| 428 |
user_id (int): The current user's ID.
|
| 429 |
+
filter_name (str): The current filter to consider.
|
| 430 |
|
| 431 |
Returns:
|
| 432 |
+
encrypted_output_image_short (bytes): A representation of the encrypted result.
|
| 433 |
|
| 434 |
"""
|
| 435 |
data = {
|
| 436 |
"user_id": user_id,
|
|
|
|
| 437 |
}
|
| 438 |
|
| 439 |
# Retrieve the encrypted output image
|
|
|
|
| 447 |
|
| 448 |
# Save the encrypted output to bytes in a file as it is too large to pass through regular
|
| 449 |
# Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
| 450 |
+
encrypted_output_path = get_client_file_path("encrypted_output", user_id)
|
|
|
|
|
|
|
| 451 |
|
| 452 |
with encrypted_output_path.open("wb") as encrypted_output_file:
|
| 453 |
encrypted_output_file.write(encrypted_output)
|
| 454 |
|
| 455 |
+
# # Decrypt the image using a different (wrong) key for display
|
| 456 |
+
# output_image_representation = decrypt_output_with_wrong_key(
|
| 457 |
+
# encrypted_output
|
| 458 |
+
# )
|
| 459 |
|
| 460 |
+
# return {
|
| 461 |
+
# encrypted_output_representation: gr.update(
|
| 462 |
+
# value=resize_img(output_image_representation)
|
| 463 |
+
# )
|
| 464 |
+
# }
|
| 465 |
+
|
| 466 |
+
# Create a truncated version of the encrypted image for display
|
| 467 |
+
encrypted_output_short = shorten_bytes_object(encrypted_output)
|
| 468 |
+
|
| 469 |
+
return encrypted_output_short
|
| 470 |
|
| 471 |
else:
|
| 472 |
raise gr.Error("Please wait for the FHE execution to be completed.")
|
| 473 |
|
| 474 |
|
| 475 |
+
def decrypt_output(user_id):
|
| 476 |
"""Decrypt the result.
|
| 477 |
|
| 478 |
Args:
|
| 479 |
user_id (int): The current user's ID.
|
| 480 |
+
filter_name (str): The current filter to consider.
|
| 481 |
|
| 482 |
Returns:
|
| 483 |
+
(output_image, False, False) ((Tuple[np.ndarray, bool, bool]): The decrypted output, as
|
| 484 |
well as two booleans used for resetting Gradio checkboxes
|
| 485 |
|
| 486 |
"""
|
|
|
|
| 488 |
raise gr.Error("Please generate the private key first.")
|
| 489 |
|
| 490 |
# Get the encrypted output path
|
| 491 |
+
encrypted_output_path = get_client_file_path("encrypted_output", user_id)
|
|
|
|
|
|
|
| 492 |
|
| 493 |
if not encrypted_output_path.is_file():
|
| 494 |
raise gr.Error("Please run the FHE execution first.")
|
|
|
|
| 498 |
encrypted_output = encrypted_output_file.read()
|
| 499 |
|
| 500 |
# Retrieve the client API
|
| 501 |
+
client = get_client()
|
| 502 |
|
| 503 |
# Deserialize, decrypt and post-process the encrypted output
|
| 504 |
+
decrypted_ouput = client.deserialize_decrypt_dequantize(encrypted_output)
|
| 505 |
|
| 506 |
print(f"Decrypted output: {decrypted_ouput.shape=}")
|
| 507 |
+
print(f"Decrypted output: {decrypted_ouput=}")
|
| 508 |
|
| 509 |
+
predicted_class_id = np.argmax(decrypted_ouput)
|
| 510 |
+
print(f"{predicted_class_id=}")
|
| 511 |
+
return "PASS" if predicted_class_id == 1 else "FAIL"
|
| 512 |
|
| 513 |
|
| 514 |
def resize_img(img, width=256, height=256):
|
| 515 |
"""Resize the image."""
|
| 516 |
+
if img.dtype != np.uint8:
|
| 517 |
+
img = img.astype(np.uint8)
|
| 518 |
img_pil = Image.fromarray(img)
|
| 519 |
# Resize the image
|
| 520 |
resized_img_pil = img_pil.resize((width, height))
|
| 521 |
+
# Convert back to a np array
|
| 522 |
+
return np.array(resized_img_pil)
|
| 523 |
|
| 524 |
|
| 525 |
demo = gr.Blocks()
|
|
|
|
| 532 |
<!--p align="center">
|
| 533 |
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
| 534 |
</p-->
|
| 535 |
+
<h1 align="center">Verio “Privacy-Preserving Biometric Verification for Authentication”</h1>
|
|
|
|
| 536 |
<p align="center">
|
| 537 |
+
#ppaihackteam14
|
| 538 |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
|
| 539 |
—
|
| 540 |
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
|
|
|
|
| 551 |
|
| 552 |
gr.Markdown("## Client side")
|
| 553 |
gr.Markdown("### Step 1: Upload input images. ")
|
| 554 |
+
# gr.Markdown(
|
| 555 |
+
# f"The image will automatically be resized to shape ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}). "
|
| 556 |
+
# "The image here, however, is displayed in its original resolution. The true image used "
|
| 557 |
+
# "in this demo can be seen in Step 8."
|
| 558 |
+
# )
|
| 559 |
gr.Markdown("The query image to certify.")
|
| 560 |
with gr.Row():
|
| 561 |
input_query_img = gr.Image(
|
|
|
|
| 567 |
interactive=True,
|
| 568 |
)
|
| 569 |
|
| 570 |
+
selfie_examples = gr.Examples(
|
| 571 |
+
examples=SELFIE_EXAMPLES,
|
| 572 |
inputs=[input_query_img],
|
| 573 |
examples_per_page=5,
|
| 574 |
label="Examples to use.",
|
|
|
|
| 584 |
interactive=True,
|
| 585 |
)
|
| 586 |
|
| 587 |
+
id_examples = gr.Examples(
|
| 588 |
+
examples=ID_EXAMPLES,
|
| 589 |
inputs=[input_reference_img],
|
| 590 |
examples_per_page=5,
|
| 591 |
label="Examples to use.",
|
| 592 |
)
|
| 593 |
|
| 594 |
+
# gr.Markdown("### Step 2: Choose your matcher.")
|
| 595 |
+
# matcher_name = gr.Dropdown(
|
| 596 |
+
# choices=AVAILABLE_MATCHERS,
|
| 597 |
+
# value="random guessing",
|
| 598 |
+
# label="Choose your matcher",
|
| 599 |
+
# interactive=True,
|
| 600 |
+
# )
|
| 601 |
+
|
| 602 |
+
# gr.Markdown("#### Notes")
|
| 603 |
+
# gr.Markdown(
|
| 604 |
+
# """
|
| 605 |
+
# - The private key is used to encrypt and decrypt the data and will never be shared.
|
| 606 |
+
# - No public key is required for these matcher operators.
|
| 607 |
+
# """
|
| 608 |
+
# )
|
| 609 |
|
| 610 |
gr.Markdown("### Step 3: Generate the private key.")
|
| 611 |
keygen_button = gr.Button("Generate the private key.")
|
|
|
|
| 614 |
keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False)
|
| 615 |
|
| 616 |
user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
|
| 617 |
+
# encrypted_query_image = gr.Textbox(
|
| 618 |
+
# value=ENCRYPTED_QUERY_NAME,
|
| 619 |
+
# label="",
|
| 620 |
+
# max_lines=2,
|
| 621 |
+
# interactive=False,
|
| 622 |
+
# visible=False,
|
| 623 |
+
# )
|
| 624 |
+
# encrypted_reference_image = gr.Textbox(
|
| 625 |
+
# value=ENCRYPTED_REFERENCE_NAME,
|
| 626 |
+
# label="",
|
| 627 |
+
# max_lines=2,
|
| 628 |
+
# interactive=False,
|
| 629 |
+
# visible=False,
|
| 630 |
+
# )
|
| 631 |
+
|
| 632 |
+
gr.Markdown("### Step 4: Encrypt the input images using FHE.")
|
| 633 |
+
encrypt_button = gr.Button("Encrypt the images using FHE.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
|
|
|
|
| 635 |
with gr.Row():
|
| 636 |
+
encrypted_input = gr.Textbox(
|
| 637 |
+
label="Encrypted input images representation:",
|
| 638 |
max_lines=2,
|
| 639 |
interactive=False,
|
| 640 |
)
|
|
|
|
| 692 |
with gr.Row():
|
| 693 |
original_query_image = gr.Image(
|
| 694 |
input_query_img.value,
|
| 695 |
+
label=f"Input query image:",
|
| 696 |
interactive=False,
|
| 697 |
height=256,
|
| 698 |
width=256,
|
| 699 |
)
|
| 700 |
original_reference_image = gr.Image(
|
| 701 |
input_reference_img.value,
|
| 702 |
+
label=f"Input reference image:",
|
| 703 |
interactive=False,
|
| 704 |
height=256,
|
| 705 |
width=256,
|
|
|
|
| 715 |
# Button to generate the private key
|
| 716 |
keygen_button.click(
|
| 717 |
keygen,
|
| 718 |
+
inputs=[],
|
| 719 |
outputs=[user_id, keygen_checkbox],
|
| 720 |
)
|
| 721 |
|
| 722 |
# Button to encrypt input query on the client side
|
| 723 |
+
encrypt_button.click(
|
| 724 |
encrypt,
|
| 725 |
+
inputs=[user_id, input_query_img, input_reference_img],
|
| 726 |
+
outputs=[encrypted_input, original_query_image, original_reference_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
)
|
| 728 |
|
| 729 |
# Button to send the encodings to the server using post method
|
| 730 |
+
send_input_button.click(send_input, inputs=[user_id], outputs=[send_input_checkbox])
|
|
|
|
|
|
|
| 731 |
|
| 732 |
# Button to send the encodings to the server using post method
|
| 733 |
+
execute_fhe_button.click(run_fhe, inputs=[user_id], outputs=[fhe_execution_time])
|
|
|
|
|
|
|
| 734 |
|
| 735 |
# Button to send the encodings to the server using post method
|
| 736 |
get_output_button.click(
|
| 737 |
get_output,
|
| 738 |
+
inputs=[user_id],
|
| 739 |
outputs=[encrypted_output_representation],
|
| 740 |
)
|
| 741 |
|
| 742 |
# Button to decrypt the output on the client side
|
| 743 |
decrypt_button.click(
|
| 744 |
decrypt_output,
|
| 745 |
+
inputs=[user_id],
|
| 746 |
+
# outputs=[output_result, original_query_image, original_reference_image],
|
| 747 |
+
outputs=[output_result],
|
| 748 |
)
|
| 749 |
|
| 750 |
gr.Markdown(
|
client_server/client.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71104d20cae502527c0e5f9f25813c5d339c2629aa640fd12d53ffcb8c78c4d5
|
| 3 |
+
size 1115569
|
matchers/filter blur/deployment/client.zip → client_server/server.zip
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9351a05f346e608a2263f0c6e77895ba9c0659151ae761251e21e39d49bb6853
|
| 3 |
+
size 17205
|
common.py
CHANGED
|
@@ -33,7 +33,10 @@ INPUT_SHAPE = (100, 100)
|
|
| 33 |
INPUT_EXAMPLES_DIR = REPO_DIR / "input_examples"
|
| 34 |
|
| 35 |
# List of all image examples suggested in the demo
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Encrypted image and output names
|
| 39 |
ENCRYPTED_QUERY_NAME = "encrypted_query_image"
|
|
|
|
| 33 |
INPUT_EXAMPLES_DIR = REPO_DIR / "input_examples"
|
| 34 |
|
| 35 |
# List of all image examples suggested in the demo
|
| 36 |
+
ID_EXAMPLES = [str(image) for image in (INPUT_EXAMPLES_DIR / "ids").glob("**/*")]
|
| 37 |
+
SELFIE_EXAMPLES = [
|
| 38 |
+
str(image) for image in (INPUT_EXAMPLES_DIR / "selfies").glob("**/*")
|
| 39 |
+
]
|
| 40 |
|
| 41 |
# Encrypted image and output names
|
| 42 |
ENCRYPTED_QUERY_NAME = "encrypted_query_image"
|
generate_deployment_files.py
CHANGED
|
@@ -8,7 +8,7 @@ print("Generating deployment files for all available filters")
|
|
| 8 |
# This repository's directory
|
| 9 |
REPO_DIR = Path(__file__).parent
|
| 10 |
# This repository's main necessary folders
|
| 11 |
-
MATCHERS_PATH = REPO_DIR / "
|
| 12 |
for matcher_name in AVAILABLE_MATCHERS:
|
| 13 |
print("Matcher:", matcher_name, "\n")
|
| 14 |
|
|
|
|
| 8 |
# This repository's directory
|
| 9 |
REPO_DIR = Path(__file__).parent
|
| 10 |
# This repository's main necessary folders
|
| 11 |
+
MATCHERS_PATH = REPO_DIR / "matchers"
|
| 12 |
for matcher_name in AVAILABLE_MATCHERS:
|
| 13 |
print("Matcher:", matcher_name, "\n")
|
| 14 |
|
input_examples/1.png
DELETED
|
Binary file (16.6 kB)
|
|
|
input_examples/2.png
DELETED
|
Binary file (18.7 kB)
|
|
|
input_examples/3.png
DELETED
|
Binary file (18.5 kB)
|
|
|
input_examples/4.png
DELETED
|
Binary file (24.2 kB)
|
|
|
input_examples/5.png
DELETED
|
Binary file (22.7 kB)
|
|
|
input_examples/ids/ID_5.jpg
ADDED
|
Git LFS Details
|
input_examples/ids/ID_6.jpg
ADDED
|
Git LFS Details
|
input_examples/ids/ID_7.jpg
ADDED
|
Git LFS Details
|
input_examples/selfies/selfie_5.jpg
ADDED
|
Git LFS Details
|
input_examples/selfies/selfie_6.jpg
ADDED
|
Git LFS Details
|
input_examples/selfies/selfie_7.jpg
ADDED
|
Git LFS Details
|
matchers.py
CHANGED
|
@@ -17,19 +17,17 @@ class TorchRandomGuessing(nn.Module):
|
|
| 17 |
super().__init__()
|
| 18 |
self.classes_ = classes_
|
| 19 |
|
| 20 |
-
def forward(self,
|
| 21 |
"""Random guessing forward pass.
|
| 22 |
|
| 23 |
Args:
|
| 24 |
-
|
| 25 |
-
r (torch.Tensor): The input reference.
|
| 26 |
|
| 27 |
Returns:
|
| 28 |
(torch.Tensor): .
|
| 29 |
"""
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
return torch.tensor([random.choice([0, 1])]) + q - q + r - r
|
| 33 |
|
| 34 |
|
| 35 |
class Matcher:
|
|
@@ -46,17 +44,14 @@ class Matcher:
|
|
| 46 |
|
| 47 |
def compile(self):
|
| 48 |
|
| 49 |
-
inputset =
|
| 50 |
|
| 51 |
print("torch module > numpy module ...")
|
| 52 |
numpy_module = NumpyModule(
|
| 53 |
# torch_model, dummy_input=torch.from_numpy(np.array([10], dtype=np.int64))
|
| 54 |
self.torch_model,
|
| 55 |
# dummy_input=(torch.tensor([10]), torch.tensor([5])),
|
| 56 |
-
dummy_input=(
|
| 57 |
-
torch.from_numpy(inputset[0][1]),
|
| 58 |
-
torch.from_numpy(inputset[0][1]),
|
| 59 |
-
),
|
| 60 |
)
|
| 61 |
|
| 62 |
print("get proxy function ...")
|
|
@@ -64,15 +59,14 @@ class Matcher:
|
|
| 64 |
# This is done in order to be able to provide any modules with arbitrary numbers of
|
| 65 |
# encrypted arguments to Concrete Numpy's compiler
|
| 66 |
numpy_filter_proxy, parameters_mapping = generate_proxy_function(
|
| 67 |
-
numpy_module.numpy_forward, ["
|
| 68 |
)
|
| 69 |
|
| 70 |
print("Compile the filter and retrieve its FHE circuit ...")
|
| 71 |
compiler = Compiler(
|
| 72 |
numpy_filter_proxy,
|
| 73 |
{
|
| 74 |
-
parameters_mapping["
|
| 75 |
-
parameters_mapping["reference"]: "encrypted",
|
| 76 |
},
|
| 77 |
)
|
| 78 |
self.fhe_circuit = compiler.compile(inputset)
|
|
|
|
| 17 |
super().__init__()
|
| 18 |
self.classes_ = classes_
|
| 19 |
|
| 20 |
+
def forward(self, x):
|
| 21 |
"""Random guessing forward pass.
|
| 22 |
|
| 23 |
Args:
|
| 24 |
+
x (torch.Tensor): concat of query and reference.
|
|
|
|
| 25 |
|
| 26 |
Returns:
|
| 27 |
(torch.Tensor): .
|
| 28 |
"""
|
| 29 |
+
x = x.sum()
|
| 30 |
+
return torch.tensor([random.choice([0, 1])]) + x - x
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
class Matcher:
|
|
|
|
| 44 |
|
| 45 |
def compile(self):
|
| 46 |
|
| 47 |
+
inputset = (np.array([10]), np.array([5]))
|
| 48 |
|
| 49 |
print("torch module > numpy module ...")
|
| 50 |
numpy_module = NumpyModule(
|
| 51 |
# torch_model, dummy_input=torch.from_numpy(np.array([10], dtype=np.int64))
|
| 52 |
self.torch_model,
|
| 53 |
# dummy_input=(torch.tensor([10]), torch.tensor([5])),
|
| 54 |
+
dummy_input=torch.from_numpy(inputset[0]),
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
|
| 57 |
print("get proxy function ...")
|
|
|
|
| 59 |
# This is done in order to be able to provide any modules with arbitrary numbers of
|
| 60 |
# encrypted arguments to Concrete Numpy's compiler
|
| 61 |
numpy_filter_proxy, parameters_mapping = generate_proxy_function(
|
| 62 |
+
numpy_module.numpy_forward, ["inputs"]
|
| 63 |
)
|
| 64 |
|
| 65 |
print("Compile the filter and retrieve its FHE circuit ...")
|
| 66 |
compiler = Compiler(
|
| 67 |
numpy_filter_proxy,
|
| 68 |
{
|
| 69 |
+
parameters_mapping["inputs"]: "encrypted",
|
|
|
|
| 70 |
},
|
| 71 |
)
|
| 72 |
self.fhe_circuit = compiler.compile(inputset)
|
matchers/filter blur/deployment/circuit.mlir
DELETED
|
@@ -1,11 +0,0 @@
|
|
| 1 |
-
module {
|
| 2 |
-
func.func @main(%arg0: tensor<100x100x3x!FHE.eint<12>>) -> tensor<98x98x3x!FHE.eint<12>> {
|
| 3 |
-
%0 = "FHELinalg.transpose"(%arg0) {axes = [2, 1, 0]} : (tensor<100x100x3x!FHE.eint<12>>) -> tensor<3x100x100x!FHE.eint<12>>
|
| 4 |
-
%expanded = tensor.expand_shape %0 [[0, 1], [2], [3]] : tensor<3x100x100x!FHE.eint<12>> into tensor<1x3x100x100x!FHE.eint<12>>
|
| 5 |
-
%cst = arith.constant dense<1> : tensor<3x1x3x3xi13>
|
| 6 |
-
%1 = "FHELinalg.conv2d"(%expanded, %cst) {dilations = dense<1> : tensor<2xi64>, group = 3 : i64, padding = dense<0> : tensor<4xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<1x3x100x100x!FHE.eint<12>>, tensor<3x1x3x3xi13>) -> tensor<1x3x98x98x!FHE.eint<12>>
|
| 7 |
-
%2 = "FHELinalg.transpose"(%1) {axes = [0, 3, 2, 1]} : (tensor<1x3x98x98x!FHE.eint<12>>) -> tensor<1x98x98x3x!FHE.eint<12>>
|
| 8 |
-
%collapsed = tensor.collapse_shape %2 [[0, 1], [2], [3]] : tensor<1x98x98x3x!FHE.eint<12>> into tensor<98x98x3x!FHE.eint<12>>
|
| 9 |
-
return %collapsed : tensor<98x98x3x!FHE.eint<12>>
|
| 10 |
-
}
|
| 11 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matchers/filter blur/deployment/configuration.json
DELETED
|
@@ -1,22 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"verbose": false,
|
| 3 |
-
"show_graph": null,
|
| 4 |
-
"show_mlir": null,
|
| 5 |
-
"show_optimizer": null,
|
| 6 |
-
"dump_artifacts_on_unexpected_failures": true,
|
| 7 |
-
"enable_unsafe_features": false,
|
| 8 |
-
"use_insecure_key_cache": false,
|
| 9 |
-
"insecure_key_cache_location": null,
|
| 10 |
-
"loop_parallelize": true,
|
| 11 |
-
"dataflow_parallelize": false,
|
| 12 |
-
"auto_parallelize": false,
|
| 13 |
-
"jit": false,
|
| 14 |
-
"p_error": null,
|
| 15 |
-
"global_p_error": null,
|
| 16 |
-
"auto_adjust_rounders": false,
|
| 17 |
-
"single_precision": true,
|
| 18 |
-
"parameter_selection_strategy": "mono",
|
| 19 |
-
"show_progress": false,
|
| 20 |
-
"progress_title": "",
|
| 21 |
-
"progress_tag": false
|
| 22 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,3 +1,6 @@
|
|
| 1 |
-
concrete-ml==1.6.
|
| 2 |
gradio
|
| 3 |
-
more_itertools
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
concrete-ml==1.6.0
|
| 2 |
gradio
|
| 3 |
+
more_itertools
|
| 4 |
+
torchvision==0.14.1
|
| 5 |
+
facenet-pytorch==2.5.3
|
| 6 |
+
opencv-python==4.10.0.84
|
server.py
CHANGED
|
@@ -5,35 +5,22 @@ from typing import List
|
|
| 5 |
from fastapi import FastAPI, File, Form, UploadFile
|
| 6 |
from fastapi.responses import JSONResponse, Response
|
| 7 |
|
| 8 |
-
from common import
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
SERVER_TMP_PATH,
|
| 14 |
-
AVAILABLE_MATCHERS,
|
| 15 |
-
)
|
| 16 |
-
from client_server_interface import FHEServer
|
| 17 |
-
|
| 18 |
-
# Load the server objects related to all currently available matchers once and for all
|
| 19 |
-
FHE_SERVERS = {
|
| 20 |
-
matcher: FHEServer(MATCHERS_PATH / f"{matcher}/deployment")
|
| 21 |
-
for matcher in AVAILABLE_MATCHERS
|
| 22 |
-
}
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def get_server_file_path(name, user_id, matcher_name):
|
| 26 |
"""Get the correct temporary file path for the server.
|
| 27 |
|
| 28 |
Args:
|
| 29 |
name (str): The desired file name.
|
| 30 |
user_id (int): The current user's ID.
|
| 31 |
-
|
| 32 |
|
| 33 |
Returns:
|
| 34 |
pathlib.Path: The file path.
|
| 35 |
"""
|
| 36 |
-
return SERVER_TMP_PATH / f"{name}_{
|
| 37 |
|
| 38 |
|
| 39 |
# Initialize an instance of FastAPI
|
|
@@ -43,83 +30,57 @@ app = FastAPI()
|
|
| 43 |
# Define the default route
|
| 44 |
@app.get("/")
|
| 45 |
def root():
|
| 46 |
-
return {"message": "Welcome to Your
|
| 47 |
|
| 48 |
|
| 49 |
@app.post("/send_input")
|
| 50 |
def send_input(
|
| 51 |
user_id: str = Form(),
|
| 52 |
-
matcher: str = Form(),
|
| 53 |
files: List[UploadFile] = File(),
|
| 54 |
):
|
| 55 |
"""Send the inputs to the server."""
|
| 56 |
# Retrieve the encrypted input image and the evaluation key paths
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
)
|
| 60 |
-
encrypted_reference_image_path = get_server_file_path(
|
| 61 |
-
ENCRYPTED_REFERENCE_NAME, user_id, matcher
|
| 62 |
-
)
|
| 63 |
-
evaluation_key_path = get_server_file_path("evaluation_key", user_id, matcher)
|
| 64 |
|
| 65 |
# Write the files using the above paths
|
| 66 |
-
with
|
| 67 |
-
"wb"
|
| 68 |
-
) as encrypted_query_image_file, encrypted_reference_image_path.open(
|
| 69 |
"wb"
|
| 70 |
-
) as
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
encrypted_query_image_file.write(files[0].file.read())
|
| 74 |
-
encrypted_reference_image_file.write(files[1].file.read())
|
| 75 |
-
evaluation_key.write(files[2].file.read())
|
| 76 |
|
| 77 |
|
| 78 |
@app.post("/run_fhe")
|
| 79 |
def run_fhe(
|
| 80 |
user_id: str = Form(),
|
| 81 |
-
matcher: str = Form(),
|
| 82 |
):
|
| 83 |
-
"""Execute the
|
| 84 |
# Retrieve the encrypted input image and the evaluation key paths
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
)
|
| 88 |
-
encrypted_reference_image_path = get_server_file_path(
|
| 89 |
-
"encrypted_reference_image", user_id, matcher
|
| 90 |
-
)
|
| 91 |
-
evaluation_key_path = get_server_file_path("evaluation_key", user_id, matcher)
|
| 92 |
|
| 93 |
# Read the files using the above paths
|
| 94 |
-
with
|
| 95 |
-
"rb"
|
| 96 |
-
) as encrypted_query_image_file, encrypted_reference_image_path.open(
|
| 97 |
-
"rb"
|
| 98 |
-
) as encrypted_reference_image_file, evaluation_key_path.open(
|
| 99 |
"rb"
|
| 100 |
-
) as evaluation_key_file:
|
| 101 |
-
|
| 102 |
-
encrypted_reference_image = encrypted_reference_image_file.read()
|
| 103 |
evaluation_key = evaluation_key_file.read()
|
| 104 |
|
| 105 |
-
# Load the FHE server related to the chosen
|
| 106 |
-
fhe_server =
|
| 107 |
|
| 108 |
# Run the FHE execution
|
| 109 |
start = time.time()
|
| 110 |
-
|
| 111 |
-
encrypted_query_image, encrypted_reference_image, evaluation_key
|
| 112 |
-
)
|
| 113 |
fhe_execution_time = round(time.time() - start, 2)
|
| 114 |
|
| 115 |
-
# Retrieve the encrypted output path
|
| 116 |
-
encrypted_output_path = get_server_file_path(
|
| 117 |
-
ENCRYPTED_OUTPUT_NAME, user_id, matcher
|
| 118 |
-
)
|
| 119 |
|
| 120 |
# Write the file using the above path
|
| 121 |
with encrypted_output_path.open("wb") as encrypted_output:
|
| 122 |
-
encrypted_output.write(
|
| 123 |
|
| 124 |
return JSONResponse(content=fhe_execution_time)
|
| 125 |
|
|
@@ -127,13 +88,10 @@ def run_fhe(
|
|
| 127 |
@app.post("/get_output")
|
| 128 |
def get_output(
|
| 129 |
user_id: str = Form(),
|
| 130 |
-
matcher: str = Form(),
|
| 131 |
):
|
| 132 |
-
"""Retrieve the encrypted output."""
|
| 133 |
-
# Retrieve the encrypted output path
|
| 134 |
-
encrypted_output_path = get_server_file_path(
|
| 135 |
-
ENCRYPTED_OUTPUT_NAME, user_id, matcher
|
| 136 |
-
)
|
| 137 |
|
| 138 |
# Read the file using the above path
|
| 139 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|
|
|
|
| 5 |
from fastapi import FastAPI, File, Form, UploadFile
|
| 6 |
from fastapi.responses import JSONResponse, Response
|
| 7 |
|
| 8 |
+
from common import SERVER_TMP_PATH
|
| 9 |
+
from concrete.ml.deployment import FHEModelClient, FHEModelServer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_server_file_path(name, user_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
"""Get the correct temporary file path for the server.
|
| 14 |
|
| 15 |
Args:
|
| 16 |
name (str): The desired file name.
|
| 17 |
user_id (int): The current user's ID.
|
| 18 |
+
filter_name (str): The filter chosen by the user
|
| 19 |
|
| 20 |
Returns:
|
| 21 |
pathlib.Path: The file path.
|
| 22 |
"""
|
| 23 |
+
return SERVER_TMP_PATH / f"{name}_{user_id}"
|
| 24 |
|
| 25 |
|
| 26 |
# Initialize an instance of FastAPI
|
|
|
|
| 30 |
# Define the default route
|
| 31 |
@app.get("/")
|
| 32 |
def root():
|
| 33 |
+
return {"message": "Welcome to Your Image FHE Filter Server!"}
|
| 34 |
|
| 35 |
|
| 36 |
@app.post("/send_input")
|
| 37 |
def send_input(
|
| 38 |
user_id: str = Form(),
|
|
|
|
| 39 |
files: List[UploadFile] = File(),
|
| 40 |
):
|
| 41 |
"""Send the inputs to the server."""
|
| 42 |
# Retrieve the encrypted input image and the evaluation key paths
|
| 43 |
+
encrypted_embedding_path = get_server_file_path("encrypted_embedding", user_id)
|
| 44 |
+
evaluation_key_path = get_server_file_path("evaluation_key", user_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Write the files using the above paths
|
| 47 |
+
with encrypted_embedding_path.open(
|
|
|
|
|
|
|
| 48 |
"wb"
|
| 49 |
+
) as encrypted_embedding, evaluation_key_path.open("wb") as evaluation_key:
|
| 50 |
+
encrypted_embedding.write(files[0].file.read())
|
| 51 |
+
evaluation_key.write(files[1].file.read())
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
@app.post("/run_fhe")
|
| 55 |
def run_fhe(
|
| 56 |
user_id: str = Form(),
|
|
|
|
| 57 |
):
|
| 58 |
+
"""Execute the filter on the encrypted input image using FHE."""
|
| 59 |
# Retrieve the encrypted input image and the evaluation key paths
|
| 60 |
+
encrypted_image_path = get_server_file_path("encrypted_embedding", user_id)
|
| 61 |
+
evaluation_key_path = get_server_file_path("evaluation_key", user_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Read the files using the above paths
|
| 64 |
+
with encrypted_image_path.open(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"rb"
|
| 66 |
+
) as encrypted_image_file, evaluation_key_path.open("rb") as evaluation_key_file:
|
| 67 |
+
encrypted_image = encrypted_image_file.read()
|
|
|
|
| 68 |
evaluation_key = evaluation_key_file.read()
|
| 69 |
|
| 70 |
+
# Load the FHE server related to the chosen filter
|
| 71 |
+
fhe_server = FHEModelServer("client_server")
|
| 72 |
|
| 73 |
# Run the FHE execution
|
| 74 |
start = time.time()
|
| 75 |
+
encrypted_output_image = fhe_server.run(encrypted_image, evaluation_key)
|
|
|
|
|
|
|
| 76 |
fhe_execution_time = round(time.time() - start, 2)
|
| 77 |
|
| 78 |
+
# Retrieve the encrypted output image path
|
| 79 |
+
encrypted_output_path = get_server_file_path("encrypted_output", user_id)
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Write the file using the above path
|
| 82 |
with encrypted_output_path.open("wb") as encrypted_output:
|
| 83 |
+
encrypted_output.write(encrypted_output_image)
|
| 84 |
|
| 85 |
return JSONResponse(content=fhe_execution_time)
|
| 86 |
|
|
|
|
| 88 |
@app.post("/get_output")
|
| 89 |
def get_output(
|
| 90 |
user_id: str = Form(),
|
|
|
|
| 91 |
):
|
| 92 |
+
"""Retrieve the encrypted output image."""
|
| 93 |
+
# Retrieve the encrypted output image path
|
| 94 |
+
encrypted_output_path = get_server_file_path("encrypted_output", user_id)
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# Read the file using the above path
|
| 97 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|