Spaces:
Sleeping
Sleeping
File size: 10,189 Bytes
49e67a8 f4d6026 49e67a8 f4d6026 49e67a8 f4d6026 49e67a8 f4d6026 f0663fb 49e67a8 f0663fb 49e67a8 f4d6026 49e67a8 f4d6026 49e67a8 f4d6026 49e67a8 f4d6026 49e67a8 f4d6026 49e67a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import json
import os
import logging
from datetime import datetime
from email.utils import parsedate_to_datetime
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
try:
from scraper import fetch_hazard_tweets, fetch_custom_tweets, get_available_hazards, get_available_locations
from classifier import classify_tweets
from pg_db import init_db, upsert_hazardous_tweet
# Initialize database (optional - will work without it)
try:
init_db()
logger.info("Database initialized successfully")
except Exception as e:
logger.warning(f"Database initialization failed: {e}. App will work without database persistence.")
except ImportError as e:
logger.error(f"Failed to import required modules: {e}")
raise
def run_pipeline(limit=20, hazard_type=None, location=None, days_back=1):
"""Run the hazard detection pipeline"""
try:
logger.info(f"Starting pipeline with limit: {limit}, hazard: {hazard_type}, location: {location}")
# Choose search method based on parameters
if hazard_type or location:
tweets = fetch_custom_tweets(
hazard_type=hazard_type,
location=location,
limit=limit,
days_back=days_back
)
else:
tweets = fetch_hazard_tweets(limit=limit)
logger.info(f"Fetched {len(tweets)} tweets")
# Process tweets: translate -> classify -> analyze
logger.info("π Processing tweets (this may take 1-2 minutes for first request)...")
results = classify_tweets(tweets)
logger.info(f"β
Processed {len(results)} tweets (translated, classified, and analyzed)")
# Store hazardous tweets in database (optional)
try:
hazardous_count = 0
for r in results:
if r.get('hazardous') == 1:
hazardous_count += 1
hazards = (r.get('ner') or {}).get('hazards') or []
hazard_type = ", ".join(hazards) if hazards else "unknown"
locs = (r.get('ner') or {}).get('locations') or []
if not locs and r.get('location'):
locs = [r['location']]
location = ", ".join(locs) if locs else "unknown"
sentiment = r.get('sentiment') or {"label": "unknown", "score": 0.0}
created_at = r.get('created_at') or ""
tweet_date = ""
tweet_time = ""
if created_at:
dt = None
try:
dt = parsedate_to_datetime(created_at)
except Exception:
dt = None
if dt is None and 'T' in created_at:
try:
iso = created_at.replace('Z', '+00:00')
dt = datetime.fromisoformat(iso)
except Exception:
dt = None
if dt is not None:
tweet_date = dt.date().isoformat()
tweet_time = dt.time().strftime('%H:%M:%S')
upsert_hazardous_tweet(
tweet_url=r.get('tweet_url') or "",
hazard_type=hazard_type,
location=location,
sentiment_label=sentiment.get('label', 'unknown'),
sentiment_score=float(sentiment.get('score', 0.0)),
tweet_date=tweet_date,
tweet_time=tweet_time,
)
logger.info(f"Stored {hazardous_count} hazardous tweets in database")
except Exception as db_error:
logger.warning(f"Database storage failed: {db_error}. Results will not be persisted.")
return results
except Exception as e:
logger.error(f"Pipeline failed: {str(e)}")
return f"Error: {str(e)}"
def analyze_tweets(limit, hazard_type, location, days_back):
"""Gradio interface function to analyze tweets"""
try:
limit = int(limit) if limit else 20
days_back = int(days_back) if days_back else 1
# Clean up inputs
hazard_type = hazard_type.strip() if hazard_type else None
location = location.strip() if location else None
results = run_pipeline(
limit=limit,
hazard_type=hazard_type,
location=location,
days_back=days_back
)
if isinstance(results, str): # Error case
return results, ""
# Count hazardous tweets
hazardous_count = sum(1 for r in results if r.get('hazardous') == 1)
total_count = len(results)
# Format results for display
display_text = f"Analyzed {total_count} tweets, found {hazardous_count} hazardous tweets.\n\n"
for i, result in enumerate(results, 1):
status = "π¨ HAZARDOUS" if result.get('hazardous') == 1 else "β
Safe"
display_text += f"{i}. {status}\n"
display_text += f" Text: {result.get('text', 'N/A')[:100]}...\n"
if result.get('translated_text'):
display_text += f" Translated: {result.get('translated_text', 'N/A')[:100]}...\n"
if result.get('hazardous') == 1:
sentiment = result.get('sentiment', {})
display_text += f" Sentiment: {sentiment.get('label', 'unknown')} ({sentiment.get('score', 0):.2f})\n"
ner = result.get('ner', {})
if ner.get('hazards'):
display_text += f" Hazards: {', '.join(ner.get('hazards', []))}\n"
if ner.get('locations'):
display_text += f" Locations: {', '.join(ner.get('locations', []))}\n"
display_text += f" URL: {result.get('tweet_url', 'N/A')}\n\n"
# Create JSON output
json_output = json.dumps(results, indent=2, ensure_ascii=False)
return display_text, json_output
except Exception as e:
return f"Error: {str(e)}", ""
# Health check endpoint
def health_check():
"""Simple health check for Docker"""
return {"status": "healthy", "message": "Ocean Hazard Detection System is running"}
# Create Gradio interface
with gr.Blocks(title="Ocean Hazard Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Ocean Hazard Detection System
This system analyzes tweets to detect ocean-related hazards using AI. It:
- Scrapes tweets about ocean hazards from Indian coastal regions
- Classifies tweets as hazardous or safe using multilingual AI
- Translates non-English tweets to English
- Analyzes sentiment and extracts hazard types and locations
- Stores hazardous tweets in a database for tracking
**Note**: This demo uses a limited dataset. In production, it would analyze real-time tweets.
""")
with gr.Row():
with gr.Column():
limit_input = gr.Number(
label="Number of tweets to analyze",
value=10,
minimum=1,
maximum=50,
step=1
)
days_back_input = gr.Number(
label="Days back to search",
value=1,
minimum=1,
maximum=7,
step=1
)
analyze_btn = gr.Button("π Analyze Tweets", variant="primary")
with gr.Column():
hazard_type_input = gr.Dropdown(
label="Hazard Type (Optional)",
choices=get_available_hazards() if 'get_available_hazards' in globals() else [],
value=None,
allow_custom_value=True,
info="Select a specific hazard type or leave empty for all hazards"
)
location_input = gr.Dropdown(
label="Location (Optional)",
choices=get_available_locations() if 'get_available_locations' in globals() else [],
value=None,
allow_custom_value=True,
info="Select a specific location or leave empty for all locations"
)
with gr.Column():
gr.Markdown("### π Analysis Results")
results_text = gr.Textbox(
label="Analysis Summary",
lines=15,
max_lines=20,
interactive=False
)
with gr.Row():
gr.Markdown("### π Raw JSON Output")
json_output = gr.Textbox(
label="Complete Analysis Data (JSON)",
lines=10,
max_lines=15,
interactive=False
)
# Event handlers
analyze_btn.click(
fn=analyze_tweets,
inputs=[limit_input, hazard_type_input, location_input, days_back_input],
outputs=[results_text, json_output]
)
# Add some example queries
gr.Markdown("""
### π What this system looks for:
- **Hazard Keywords**: flood, tsunami, cyclone, storm surge, high tide, high waves, swell, coastal flooding, rip current, coastal erosion, water discoloration, algal bloom, marine debris, pollution
- **Locations**: Mumbai, Chennai, Kolkata, Odisha, Kerala, Gujarat, Goa, Andhra Pradesh, West Bengal, Vizag, Puri, Bay of Bengal, Arabian Sea
- **Languages**: Supports 20+ Indian languages including Hindi, Bengali, Tamil, Telugu, Marathi, Gujarati, and English
""")
if __name__ == "__main__":
# Add health check route
demo.launch(
server_name="0.0.0.0", # Important for Docker
server_port=7860, # Gradio default port
show_error=True, # Show errors in the interface
share=False, # Don't create public link
debug=True # Enable debug mode
)
|