Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| sstate_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| # Initialize both pipelines and store them in a dictionary | |
| pipelines = { | |
| "RealVisXL V5.0 Lightning": StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda"), | |
| "RealVisXL V4.0 Lightning": StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V4.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda"), | |
| } | |
| for pipe in pipelines.values(): | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
| target_size = (width, height) | |
| # Calculate the scaling factor to fit the image within the target size | |
| scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) | |
| new_width = int(image.width * scale_factor) | |
| new_height = int(image.height * scale_factor) | |
| # Resize the source image to fit within target size | |
| source = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Apply resize option using percentages | |
| if resize_option == "Full": | |
| resize_percentage = 100 | |
| elif resize_option == "50%": | |
| resize_percentage = 50 | |
| elif resize_option == "33%": | |
| resize_percentage = 33 | |
| elif resize_option == "25%": | |
| resize_percentage = 25 | |
| else: # Custom | |
| resize_percentage = custom_resize_percentage | |
| # Calculate new dimensions based on percentage | |
| resize_factor = resize_percentage / 100 | |
| new_width = int(source.width * resize_factor) | |
| new_height = int(source.height * resize_factor) | |
| # Ensure minimum size of 64 pixels | |
| new_width = max(new_width, 64) | |
| new_height = max(new_height, 64) | |
| # Resize the image | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate the overlap in pixels based on the percentage | |
| overlap_x = int(new_width * (overlap_percentage / 100)) | |
| overlap_y = int(new_height * (overlap_percentage / 100)) | |
| # Ensure minimum overlap of 1 pixel | |
| overlap_x = max(overlap_x, 1) | |
| overlap_y = max(overlap_y, 1) | |
| # Calculate margins based on alignment | |
| if alignment == "Middle": | |
| margin_x = (target_size[0] - new_width) // 2 | |
| margin_y = (target_size[1] - new_height) // 2 | |
| elif alignment == "Left": | |
| margin_x = 0 | |
| margin_y = (target_size[1] - new_height) // 2 | |
| elif alignment == "Right": | |
| margin_x = target_size[0] - new_width | |
| margin_y = (target_size[1] - new_height) // 2 | |
| elif alignment == "Top": | |
| margin_x = (target_size[0] - new_width) // 2 | |
| margin_y = 0 | |
| elif alignment == "Bottom": | |
| margin_x = (target_size[0] - new_width) // 2 | |
| margin_y = target_size[1] - new_height | |
| # Adjust margins to eliminate gaps | |
| margin_x = max(0, min(margin_x, target_size[0] - new_width)) | |
| margin_y = max(0, min(margin_y, target_size[1] - new_height)) | |
| # Create a new background image and paste the resized source image | |
| background = Image.new('RGB', target_size, (255, 255, 255)) | |
| background.paste(source, (margin_x, margin_y)) | |
| # Create the mask | |
| mask = Image.new('L', target_size, 255) | |
| mask_draw = ImageDraw.Draw(mask) | |
| # Calculate overlap areas | |
| white_gaps_patch = 2 | |
| left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch | |
| right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch | |
| top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch | |
| bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch | |
| if alignment == "Left": | |
| left_overlap = margin_x + overlap_x if overlap_left else margin_x | |
| elif alignment == "Right": | |
| right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width | |
| elif alignment == "Top": | |
| top_overlap = margin_y + overlap_y if overlap_top else margin_y | |
| elif alignment == "Bottom": | |
| bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height | |
| # Draw the mask | |
| mask_draw.rectangle([ | |
| (left_overlap, top_overlap), | |
| (right_overlap, bottom_overlap) | |
| ], fill=0) | |
| return background, mask | |
| def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, selected_model): | |
| background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
| cnet_image = background.copy() | |
| cnet_image.paste(0, (0, 0), mask) | |
| final_prompt = f"{prompt_input} , high quality, 4k" | |
| # Access the selected pipeline from the dictionary | |
| pipe = pipelines[selected_model] | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(final_prompt, "cuda", True) | |
| # Generate the image | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| num_inference_steps=num_inference_steps | |
| ): | |
| pass # Wait for the generation to complete | |
| generated_image = image # Get the last image | |
| generated_image = generated_image.convert("RGBA") | |
| cnet_image.paste(generated_image, (0, 0), mask) | |
| return cnet_image | |
| def clear_result(): | |
| """Clears the result Image.""" | |
| return gr.update(value=None) | |
| def preload_presets(target_ratio, ui_width, ui_height): | |
| """Updates the width and height sliders based on the selected aspect ratio.""" | |
| if target_ratio == "9:16": | |
| changed_width = 720 | |
| changed_height = 1280 | |
| return changed_width, changed_height, gr.update() | |
| elif target_ratio == "16:9": | |
| changed_width = 1280 | |
| changed_height = 720 | |
| return changed_width, changed_height, gr.update() | |
| elif target_ratio == "1:1": | |
| changed_width = 1024 | |
| changed_height = 1024 | |
| return changed_width, changed_height, gr.update() | |
| elif target_ratio == "Custom": | |
| return ui_width, ui_height, gr.update(open=True) | |
| def select_the_right_preset(user_width, user_height): | |
| if user_width == 720 and user_height == 1280: | |
| return "9:16" | |
| elif user_width == 1280 and user_height == 720: | |
| return "16:9" | |
| elif user_width == 1024 and user_height == 1024: | |
| return "1:1" | |
| else: | |
| return "Custom" | |
| def toggle_custom_resize_slider(resize_option): | |
| return gr.update(visible=(resize_option == "Custom")) | |
| def update_history(new_image, history): | |
| """Updates the history gallery with the new image.""" | |
| if history is None: | |
| history = [] | |
| history.insert(0, new_image) | |
| return history | |
| # CSS and title (unchanged) | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| """ | |
| title = """<h1>Image Outpaint Expand 🪃</h1>""" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(): | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| type="pil", | |
| label="Input Image" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| prompt_input = gr.Textbox(label="Prompt (Optional)") | |
| with gr.Column(scale=1): | |
| run_button = gr.Button("Re-Generate Image / Diffusers Outpaint Image Lightning / Lightning v4, v5", elem_classes="submit-btn") | |
| with gr.Row(): | |
| model_selector = gr.Dropdown( | |
| label="Select Model", | |
| choices=list(pipelines.keys()), | |
| value="RealVisXL V5.0 Lightning", | |
| ) | |
| with gr.Row(): | |
| target_ratio = gr.Radio( | |
| label="Expected Ratio", | |
| choices=["9:16", "16:9", "1:1", "Custom"], | |
| value="9:16", | |
| scale=2 | |
| ) | |
| alignment_dropdown = gr.Dropdown( | |
| choices=["Middle", "Left", "Right", "Top", "Bottom"], | |
| value="Middle", | |
| label="Alignment" | |
| ) | |
| with gr.Accordion(label="Advanced settings", open=False) as settings_panel: | |
| with gr.Column(): | |
| with gr.Row(): | |
| width_slider = gr.Slider( | |
| label="Width", | |
| minimum=720, | |
| maximum=1536, | |
| step=8, | |
| value=720, | |
| ) | |
| height_slider = gr.Slider( | |
| label="Height", | |
| minimum=720, | |
| maximum=1536, | |
| step=8, | |
| value=1280, | |
| ) | |
| num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) | |
| with gr.Group(): | |
| overlap_percentage = gr.Slider( | |
| label="Mask overlap (%)", | |
| minimum=1, | |
| maximum=50, | |
| value=10, | |
| step=1 | |
| ) | |
| with gr.Row(): | |
| overlap_top = gr.Checkbox(label="Overlap Top", value=True) | |
| overlap_right = gr.Checkbox(label="Overlap Right", value=True) | |
| with gr.Row(): | |
| overlap_left = gr.Checkbox(label="Overlap Left", value=True) | |
| overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True) | |
| with gr.Row(): | |
| resize_option = gr.Radio( | |
| label="Resize input image", | |
| #choices=["Full", "50%", "33%", "25%", "Custom"], | |
| choices=["Full", "50%", "33%", "25%", "Custom"], | |
| value="Full" | |
| ) | |
| custom_resize_percentage = gr.Slider( | |
| label="Custom resize (%)", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| visible=False | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["./examples/3.jpg", 1024, 1024, "Top"], | |
| ["./examples/4.jpg", 1024, 1024, "Middle"], | |
| ["./examples/2.png", 720, 1280, "Left"], | |
| ["./examples/1.png", 1280, 720, "Bottom"], | |
| ["./examples/5.jpg", 1024, 1024, "Bottom"], | |
| ], | |
| inputs=[input_image, width_slider, height_slider, alignment_dropdown], | |
| ) | |
| with gr.Column(): | |
| result = gr.Image( | |
| interactive=False, | |
| label="Generated Image", | |
| format="png", | |
| ) | |
| history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) | |
| target_ratio.change( | |
| fn=preload_presets, | |
| inputs=[target_ratio, width_slider, height_slider], | |
| outputs=[width_slider, height_slider, settings_panel], | |
| queue=False | |
| ) | |
| width_slider.change( | |
| fn=select_the_right_preset, | |
| inputs=[width_slider, height_slider], | |
| outputs=[target_ratio], | |
| queue=False | |
| ) | |
| height_slider.change( | |
| fn=select_the_right_preset, | |
| inputs=[width_slider, height_slider], | |
| outputs=[target_ratio], | |
| queue=False | |
| ) | |
| resize_option.change( | |
| fn=toggle_custom_resize_slider, | |
| inputs=[resize_option], | |
| outputs=[custom_resize_percentage], | |
| queue=False | |
| ) | |
| run_button.click( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=infer, | |
| inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, | |
| resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, | |
| overlap_left, overlap_right, overlap_top, overlap_bottom, model_selector], | |
| outputs=result, | |
| ).then( | |
| fn=lambda x, history: update_history(x, history), | |
| inputs=[result, history_gallery], | |
| outputs=history_gallery, | |
| ) | |
| prompt_input.submit( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=infer, | |
| inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, | |
| resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, | |
| overlap_left, overlap_right, overlap_top, overlap_bottom, model_selector], | |
| outputs=result, | |
| ).then( | |
| fn=lambda x, history: update_history(x, history), | |
| inputs=[result, history_gallery], | |
| outputs=history_gallery, | |
| ) | |
| demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True) |