Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load multimodal processor and model (Callisto OCR3) | |
| MODEL_ID = "nvidia/Cosmos-Reason1-7B" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to 10 evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| # Sample 10 evenly spaced frames. | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def progress_bar_html(label: str) -> str: | |
| """ | |
| Returns an HTML snippet for a thin progress bar with a label. | |
| The progress bar is styled as a light cyan animated bar. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| def generate(text: str, files: list, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the Qwen2VL model for image and video inputs. | |
| - If images are provided, performs image inference. | |
| - If videos are provided, performs video inference by downsampling to frames. | |
| """ | |
| if not files: | |
| yield "Please upload an image or video for inference." | |
| return | |
| # Determine if the files are images or videos | |
| image_files = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))] | |
| video_files = [f for f in files if f.lower().endswith(('.mp4', '.avi', '.mov', '.mkv'))] | |
| if image_files and video_files: | |
| yield "Please upload either images or videos, not both." | |
| return | |
| if image_files: | |
| # Image inference | |
| images = [load_image(image) for image in image_files] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=images, | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=True, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing images with cosmos-reasoning") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| elif video_files: | |
| # Video inference | |
| video_path = video_files[0] # Assuming only one video is uploaded | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": text}]} | |
| ] | |
| # Append each frame with its timestamp. | |
| for frame in frames: | |
| image, timestamp = frame | |
| image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
| image.save(image_path) | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "url": image_path}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=True, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing video with cosmos-reasoning") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| yield "Unsupported file type. Please upload images or videos." | |
| # Create the Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# **cosmos-reason1 by nvidia**") | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| file_input = gr.File(label="Upload Image or Video", file_types=["image", "video"], file_count="multiple") | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| output = gr.Textbox(label="Output", interactive=False) | |
| submit_btn.click( | |
| fn=generate, | |
| inputs=[text_input, file_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(share=True) |