Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| import spaces | |
| # Setup | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo" | |
| torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) | |
| pipe.load_lora_weights("strangerzonehf/SD3.5-Turbo-Portrait-LoRA", weight_name="SD3.5-Turbo-Portrait.safetensors") | |
| pipe.fuse_lora(lora_scale=1.0) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # Style presets | |
| style_list = [ | |
| { | |
| "name": "3840 x 2160", | |
| "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
| }, | |
| { | |
| "name": "2560 x 1440", | |
| "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
| }, | |
| { | |
| "name": "HD+", | |
| "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
| }, | |
| { | |
| "name": "Style Zero", | |
| "prompt": "{prompt}", | |
| "negative_prompt": "", | |
| }, | |
| ] | |
| STYLE_NAMES = [s["name"] for s in style_list] | |
| def randomize_seed_fn(seed, randomize): | |
| return random.randint(0, MAX_SEED) if randomize else seed | |
| def save_image(img): | |
| filename = str(uuid.uuid4()) + ".png" | |
| img.save(filename) | |
| return filename | |
| def generate_images( | |
| prompt, | |
| style, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| num_images, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| seed = randomize_seed_fn(seed, randomize_seed) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| selected_style = next(s for s in style_list if s["name"] == style) | |
| styled_prompt = selected_style["prompt"].format(prompt=prompt) | |
| styled_negative_prompt = selected_style["negative_prompt"] if not negative_prompt else negative_prompt | |
| images = [] | |
| for _ in range(num_images): | |
| image = pipe( | |
| prompt=styled_prompt, | |
| negative_prompt=styled_negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator | |
| ).images[0] | |
| images.append(image) | |
| image_paths = [save_image(img) for img in images] | |
| return image_paths, seed | |
| # CSS & Interface | |
| css = ''' | |
| .gradio-container { | |
| max-width: 150%; | |
| margin: 0 auto; | |
| } | |
| h1 { text-align: center; } | |
| footer { visibility: hidden; } | |
| ''' | |
| examples = [ | |
| "portrait photo of a futuristic astronaut", | |
| "macro shot of a water droplet on a leaf", | |
| "hyper-realistic food photography of a burger", | |
| "cyberpunk city at night, rain, neon lights", | |
| "ultra detailed fantasy landscape with dragons", | |
| ] | |
| with gr.Blocks(css=css, theme="YTheme/GMaterial") as demo: | |
| gr.Markdown("## SD3.5 Turbo: Text to Image") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result_gallery = gr.Gallery(show_label=False, format="png", columns=2, object_fit="contain") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| num_images = gr.Slider( | |
| label="Number of Images", | |
| minimum=1, | |
| maximum=10, | |
| value=5, | |
| step=1, | |
| ) | |
| style = gr.Dropdown(label="Select Style", choices=STYLE_NAMES, value=STYLE_NAMES[0]) | |
| negative_prompt = gr.Text( | |
| label="Negative Prompt", | |
| max_lines=4, | |
| lines=3, | |
| value="cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly" | |
| ) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.5, value=0.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=30, step=1, value=4) | |
| with gr.Column(scale=1): | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| cache_examples=False, | |
| ) | |
| gr.on( | |
| triggers=[prompt.submit, run_button.click], | |
| fn=generate_images, | |
| inputs=[ | |
| prompt, | |
| style, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| num_images | |
| ], | |
| outputs=[result_gallery, seed], | |
| api_name="generate" | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=40).launch(ssr_mode=False) |