Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import json
|
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
|
@@ -12,13 +13,83 @@ import torch
|
|
| 12 |
import numpy as np
|
| 13 |
from PIL import Image
|
| 14 |
import cv2
|
|
|
|
| 15 |
|
| 16 |
from transformers import (
|
|
|
|
| 17 |
Qwen2_5_VLForConditionalGeneration,
|
| 18 |
AutoProcessor,
|
| 19 |
TextIteratorStreamer,
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
from transformers.image_utils import load_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Constants for text generation
|
| 24 |
MAX_MAX_NEW_TOKENS = 2048
|
|
@@ -72,7 +143,7 @@ def downsample_video(video_path):
|
|
| 72 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 73 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 74 |
frames = []
|
| 75 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 76 |
for i in frame_indices:
|
| 77 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 78 |
success, image = vidcap.read()
|
|
@@ -96,17 +167,13 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 96 |
Yields raw text and Markdown-formatted text.
|
| 97 |
"""
|
| 98 |
if model_name == "Cosmos-Reason1-7B":
|
| 99 |
-
processor = processor_m
|
| 100 |
-
model = model_m
|
| 101 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
| 102 |
-
processor = processor_x
|
| 103 |
-
model = model_x
|
| 104 |
elif model_name == "Captioner-7B-Qwen2.5VL":
|
| 105 |
-
processor = processor_z
|
| 106 |
-
model = model_z
|
| 107 |
elif model_name == "visionOCR-3B":
|
| 108 |
-
processor = processor_v
|
| 109 |
-
model = model_v
|
| 110 |
else:
|
| 111 |
yield "Invalid model selected.", "Invalid model selected."
|
| 112 |
return
|
|
@@ -118,7 +185,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 118 |
messages = [{
|
| 119 |
"role": "user",
|
| 120 |
"content": [
|
| 121 |
-
{"type": "image"
|
| 122 |
{"type": "text", "text": text},
|
| 123 |
]
|
| 124 |
}]
|
|
@@ -128,7 +195,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 128 |
images=[image],
|
| 129 |
return_tensors="pt",
|
| 130 |
padding=True,
|
| 131 |
-
truncation=
|
| 132 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 133 |
).to(device)
|
| 134 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
@@ -153,17 +220,13 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 153 |
Yields raw text and Markdown-formatted text.
|
| 154 |
"""
|
| 155 |
if model_name == "Cosmos-Reason1-7B":
|
| 156 |
-
processor = processor_m
|
| 157 |
-
model = model_m
|
| 158 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
| 159 |
-
processor = processor_x
|
| 160 |
-
model = model_x
|
| 161 |
elif model_name == "Captioner-7B-Qwen2.5VL":
|
| 162 |
-
processor = processor_z
|
| 163 |
-
model = model_z
|
| 164 |
elif model_name == "visionOCR-3B":
|
| 165 |
-
processor = processor_v
|
| 166 |
-
model = model_v
|
| 167 |
else:
|
| 168 |
yield "Invalid model selected.", "Invalid model selected."
|
| 169 |
return
|
|
@@ -187,7 +250,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 187 |
add_generation_prompt=True,
|
| 188 |
return_dict=True,
|
| 189 |
return_tensors="pt",
|
| 190 |
-
truncation=
|
| 191 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 192 |
).to(device)
|
| 193 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
@@ -221,42 +284,30 @@ video_examples = [
|
|
| 221 |
]
|
| 222 |
|
| 223 |
css = """
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
color: white !important;
|
| 227 |
-
}
|
| 228 |
-
.submit-btn:hover {
|
| 229 |
-
background-color: #3498db !important;
|
| 230 |
}
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
border-radius: 10px;
|
| 234 |
-
padding: 20px;
|
| 235 |
}
|
| 236 |
"""
|
| 237 |
|
| 238 |
# Create the Gradio Interface
|
| 239 |
-
with gr.Blocks(css=css, theme=
|
| 240 |
-
gr.Markdown("# **
|
| 241 |
with gr.Row():
|
| 242 |
-
with gr.Column():
|
| 243 |
with gr.Tabs():
|
| 244 |
with gr.TabItem("Image Inference"):
|
| 245 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 246 |
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 247 |
-
image_submit = gr.Button("Submit",
|
| 248 |
-
gr.Examples(
|
| 249 |
-
examples=image_examples,
|
| 250 |
-
inputs=[image_query, image_upload]
|
| 251 |
-
)
|
| 252 |
with gr.TabItem("Video Inference"):
|
| 253 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 254 |
video_upload = gr.Video(label="Video", height=290)
|
| 255 |
-
video_submit = gr.Button("Submit",
|
| 256 |
-
gr.Examples(
|
| 257 |
-
examples=video_examples,
|
| 258 |
-
inputs=[video_query, video_upload]
|
| 259 |
-
)
|
| 260 |
|
| 261 |
with gr.Accordion("Advanced options", open=False):
|
| 262 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
@@ -265,25 +316,17 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 265 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 266 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 267 |
|
| 268 |
-
with gr.Column():
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
with gr.Accordion("(Result.md)", open=False):
|
| 274 |
-
markdown_output = gr.Markdown()
|
| 275 |
|
| 276 |
model_choice = gr.Radio(
|
| 277 |
choices=["Cosmos-Reason1-7B", "docscopeOCR-7B-050425-exp", "Captioner-7B-Qwen2.5VL", "visionOCR-3B"],
|
| 278 |
label="Select Model",
|
| 279 |
value="Cosmos-Reason1-7B"
|
| 280 |
)
|
| 281 |
-
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/DocScope-R1/discussions)")
|
| 282 |
-
gr.Markdown("> [Cosmos-Reason1-7B](https://huggingface.co/nvidia/Cosmos-Reason1-7B): understand physical common sense and generate appropriate embodied decisions.")
|
| 283 |
-
gr.Markdown("> [docscopeOCR-7B-050425-exp](https://huggingface.co/prithivMLmods/docscopeOCR-7B-050425-exp): optimized for document-level optical character recognition, long-context vision-language understanding.")
|
| 284 |
-
gr.Markdown("> [Captioner-Relaxed-7B](https://huggingface.co/Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed): build with hand-curated dataset for text-to-image models, providing significantly more detailed descriptions or captions of given images.")
|
| 285 |
-
gr.Markdown("> [visionOCR-3B](https://huggingface.co/prithivMLmods/visionOCR-3B-061125): visionocr-3b-061125 model is a fine-tuned version of qwen2.5-vl-3b-instruct, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
| 286 |
-
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 287 |
|
| 288 |
image_submit.click(
|
| 289 |
fn=generate_image,
|
|
@@ -297,4 +340,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 297 |
)
|
| 298 |
|
| 299 |
if __name__ == "__main__":
|
| 300 |
-
demo.queue(max_size=30).launch(
|
|
|
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
| 8 |
+
from typing import Iterable
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
import cv2
|
| 16 |
+
import requests
|
| 17 |
|
| 18 |
from transformers import (
|
| 19 |
+
Qwen2VLForConditionalGeneration,
|
| 20 |
Qwen2_5_VLForConditionalGeneration,
|
| 21 |
AutoProcessor,
|
| 22 |
TextIteratorStreamer,
|
| 23 |
+
AutoModel,
|
| 24 |
+
AutoTokenizer,
|
| 25 |
)
|
| 26 |
from transformers.image_utils import load_image
|
| 27 |
+
from gradio.themes import Soft
|
| 28 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 29 |
+
|
| 30 |
+
# --- Theme and CSS Definition ---
|
| 31 |
+
|
| 32 |
+
colors.steel_blue = colors.Color(
|
| 33 |
+
name="steel_blue",
|
| 34 |
+
c50="#EBF3F8",
|
| 35 |
+
c100="#D3E5F0",
|
| 36 |
+
c200="#A8CCE1",
|
| 37 |
+
c300="#7DB3D2",
|
| 38 |
+
c400="#529AC3",
|
| 39 |
+
c500="#4682B4", # SteelBlue base color
|
| 40 |
+
c600="#3E72A0",
|
| 41 |
+
c700="#36638C",
|
| 42 |
+
c800="#2E5378",
|
| 43 |
+
c900="#264364",
|
| 44 |
+
c950="#1E3450",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
class SteelBlueTheme(Soft):
|
| 48 |
+
def __init__(
|
| 49 |
+
self,
|
| 50 |
+
*,
|
| 51 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 52 |
+
secondary_hue: colors.Color | str = colors.steel_blue,
|
| 53 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 54 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 55 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 56 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 57 |
+
),
|
| 58 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 59 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 60 |
+
),
|
| 61 |
+
):
|
| 62 |
+
super().__init__(
|
| 63 |
+
primary_hue=primary_hue,
|
| 64 |
+
secondary_hue=secondary_hue,
|
| 65 |
+
neutral_hue=neutral_hue,
|
| 66 |
+
text_size=text_size,
|
| 67 |
+
font=font,
|
| 68 |
+
font_mono=font_mono,
|
| 69 |
+
)
|
| 70 |
+
super().set(
|
| 71 |
+
background_fill_primary="*primary_50",
|
| 72 |
+
background_fill_primary_dark="*primary_900",
|
| 73 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 74 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 75 |
+
button_primary_text_color="white",
|
| 76 |
+
button_primary_text_color_hover="white",
|
| 77 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 78 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 79 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 80 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 81 |
+
slider_color="*secondary_500",
|
| 82 |
+
slider_color_dark="*secondary_600",
|
| 83 |
+
block_title_text_weight="600",
|
| 84 |
+
block_border_width="3px",
|
| 85 |
+
block_shadow="*shadow_drop_lg",
|
| 86 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 87 |
+
button_large_padding="11px",
|
| 88 |
+
color_accent_soft="*primary_100",
|
| 89 |
+
block_label_background_fill="*primary_200",
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
steel_blue_theme = SteelBlueTheme()
|
| 93 |
|
| 94 |
# Constants for text generation
|
| 95 |
MAX_MAX_NEW_TOKENS = 2048
|
|
|
|
| 143 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 144 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 145 |
frames = []
|
| 146 |
+
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 147 |
for i in frame_indices:
|
| 148 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 149 |
success, image = vidcap.read()
|
|
|
|
| 167 |
Yields raw text and Markdown-formatted text.
|
| 168 |
"""
|
| 169 |
if model_name == "Cosmos-Reason1-7B":
|
| 170 |
+
processor, model = processor_m, model_m
|
|
|
|
| 171 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
| 172 |
+
processor, model = processor_x, model_x
|
|
|
|
| 173 |
elif model_name == "Captioner-7B-Qwen2.5VL":
|
| 174 |
+
processor, model = processor_z, model_z
|
|
|
|
| 175 |
elif model_name == "visionOCR-3B":
|
| 176 |
+
processor, model = processor_v, model_v
|
|
|
|
| 177 |
else:
|
| 178 |
yield "Invalid model selected.", "Invalid model selected."
|
| 179 |
return
|
|
|
|
| 185 |
messages = [{
|
| 186 |
"role": "user",
|
| 187 |
"content": [
|
| 188 |
+
{"type": "image"},
|
| 189 |
{"type": "text", "text": text},
|
| 190 |
]
|
| 191 |
}]
|
|
|
|
| 195 |
images=[image],
|
| 196 |
return_tensors="pt",
|
| 197 |
padding=True,
|
| 198 |
+
truncation=True,
|
| 199 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 200 |
).to(device)
|
| 201 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 220 |
Yields raw text and Markdown-formatted text.
|
| 221 |
"""
|
| 222 |
if model_name == "Cosmos-Reason1-7B":
|
| 223 |
+
processor, model = processor_m, model_m
|
|
|
|
| 224 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
| 225 |
+
processor, model = processor_x, model_x
|
|
|
|
| 226 |
elif model_name == "Captioner-7B-Qwen2.5VL":
|
| 227 |
+
processor, model = processor_z, model_z
|
|
|
|
| 228 |
elif model_name == "visionOCR-3B":
|
| 229 |
+
processor, model = processor_v, model_v
|
|
|
|
| 230 |
else:
|
| 231 |
yield "Invalid model selected.", "Invalid model selected."
|
| 232 |
return
|
|
|
|
| 250 |
add_generation_prompt=True,
|
| 251 |
return_dict=True,
|
| 252 |
return_tensors="pt",
|
| 253 |
+
truncation=True,
|
| 254 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 255 |
).to(device)
|
| 256 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 284 |
]
|
| 285 |
|
| 286 |
css = """
|
| 287 |
+
#main-title h1 {
|
| 288 |
+
font-size: 2.3em !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
}
|
| 290 |
+
#output-title h2 {
|
| 291 |
+
font-size: 2.1em !important;
|
|
|
|
|
|
|
| 292 |
}
|
| 293 |
"""
|
| 294 |
|
| 295 |
# Create the Gradio Interface
|
| 296 |
+
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 297 |
+
gr.Markdown("# **DocScope R1**", elem_id="main-title")
|
| 298 |
with gr.Row():
|
| 299 |
+
with gr.Column(scale=2):
|
| 300 |
with gr.Tabs():
|
| 301 |
with gr.TabItem("Image Inference"):
|
| 302 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 303 |
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 304 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 305 |
+
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
|
|
|
|
|
|
|
|
|
| 306 |
with gr.TabItem("Video Inference"):
|
| 307 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 308 |
video_upload = gr.Video(label="Video", height=290)
|
| 309 |
+
video_submit = gr.Button("Submit", variant="primary")
|
| 310 |
+
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
with gr.Accordion("Advanced options", open=False):
|
| 313 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
|
|
| 316 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 317 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 318 |
|
| 319 |
+
with gr.Column(scale=3):
|
| 320 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 321 |
+
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
|
| 322 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 323 |
+
markdown_output = gr.Markdown()
|
|
|
|
|
|
|
| 324 |
|
| 325 |
model_choice = gr.Radio(
|
| 326 |
choices=["Cosmos-Reason1-7B", "docscopeOCR-7B-050425-exp", "Captioner-7B-Qwen2.5VL", "visionOCR-3B"],
|
| 327 |
label="Select Model",
|
| 328 |
value="Cosmos-Reason1-7B"
|
| 329 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
image_submit.click(
|
| 332 |
fn=generate_image,
|
|
|
|
| 340 |
)
|
| 341 |
|
| 342 |
if __name__ == "__main__":
|
| 343 |
+
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
|