Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,8 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
import torch
|
| 5 |
from diffusers import AutoencoderKL, TCDScheduler
|
| 6 |
from diffusers.models.model_loading_utils import load_state_dict
|
| 7 |
-
# Remove ImageSlider import as it's no longer needed
|
| 8 |
-
# from gradio_imageslider import ImageSlider
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
| 11 |
from controlnet_union import ControlNetModel_Union
|
|
@@ -14,7 +11,6 @@ from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
|
| 14 |
from PIL import Image, ImageDraw
|
| 15 |
import numpy as np
|
| 16 |
|
| 17 |
-
# --- Model Loading (Keep as is) ---
|
| 18 |
config_file = hf_hub_download(
|
| 19 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 20 |
filename="config_promax.json",
|
|
@@ -26,9 +22,10 @@ model_file = hf_hub_download(
|
|
| 26 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 27 |
filename="diffusion_pytorch_model_promax.safetensors",
|
| 28 |
)
|
| 29 |
-
|
|
|
|
| 30 |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 31 |
-
controlnet_model,
|
| 32 |
)
|
| 33 |
model.to(device="cuda", dtype=torch.float16)
|
| 34 |
|
|
@@ -46,8 +43,6 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
|
| 46 |
|
| 47 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 48 |
|
| 49 |
-
# --- Helper Functions (Keep as is, except infer) ---
|
| 50 |
-
|
| 51 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 52 |
"""Checks if the image can be expanded based on the alignment."""
|
| 53 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
|
@@ -63,7 +58,7 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 63 |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 64 |
new_width = int(image.width * scale_factor)
|
| 65 |
new_height = int(image.height * scale_factor)
|
| 66 |
-
|
| 67 |
# Resize the source image to fit within target size
|
| 68 |
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 69 |
|
|
@@ -135,7 +130,7 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 135 |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
| 136 |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 137 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
| 138 |
-
|
| 139 |
if alignment == "Left":
|
| 140 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 141 |
elif alignment == "Right":
|
|
@@ -145,7 +140,6 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 145 |
elif alignment == "Bottom":
|
| 146 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
| 147 |
|
| 148 |
-
|
| 149 |
# Draw the mask
|
| 150 |
mask_draw.rectangle([
|
| 151 |
(left_overlap, top_overlap),
|
|
@@ -156,47 +150,33 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 156 |
|
| 157 |
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 158 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 159 |
-
|
| 160 |
# Create a preview image showing the mask
|
| 161 |
preview = background.copy().convert('RGBA')
|
| 162 |
-
|
| 163 |
# Create a semi-transparent red overlay
|
| 164 |
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
| 165 |
-
|
| 166 |
# Convert black pixels in the mask to semi-transparent red
|
| 167 |
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
| 168 |
red_mask.paste(red_overlay, (0, 0), mask)
|
| 169 |
-
|
| 170 |
# Overlay the red mask on the background
|
| 171 |
preview = Image.alpha_composite(preview, red_mask)
|
| 172 |
-
|
| 173 |
return preview
|
| 174 |
|
| 175 |
@spaces.GPU(duration=24)
|
| 176 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 177 |
-
if image is None:
|
| 178 |
-
raise gr.Error("Please upload an input image.")
|
| 179 |
-
|
| 180 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 181 |
-
|
| 182 |
if not can_expand(background.width, background.height, width, height, alignment):
|
| 183 |
-
# Optionally provide feedback or default to middle
|
| 184 |
-
# gr.Warning(f"Cannot expand image with '{alignment}' alignment as source dimension is larger than target. Defaulting to 'Middle'.")
|
| 185 |
alignment = "Middle"
|
| 186 |
-
# Recalculate background and mask if alignment changed due to this check
|
| 187 |
-
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 188 |
-
|
| 189 |
|
| 190 |
cnet_image = background.copy()
|
| 191 |
-
|
| 192 |
-
# cnet_image.paste(0, (0, 0), mask) # This line seems incorrect for inpainting/outpainting, usually the unmasked area is kept
|
| 193 |
-
# The pipeline expects the original image content where mask=0 and potentially noise/latents where mask=1
|
| 194 |
-
# Let's keep the original image content in the unmasked area and let the pipeline handle the masked area.
|
| 195 |
-
# The `StableDiffusionXLFillPipeline` likely uses the `image` input and `mask` differently than standard inpainting.
|
| 196 |
-
# Based on typical diffusers pipelines, `image` is often the *original* content placed on the canvas.
|
| 197 |
-
# Let's pass `background` as the image input for the pipeline.
|
| 198 |
|
| 199 |
-
final_prompt = f"{prompt_input} , high quality, 4k"
|
| 200 |
|
| 201 |
(
|
| 202 |
prompt_embeds,
|
|
@@ -205,42 +185,25 @@ def infer(image, width, height, overlap_percentage, num_inference_steps, resize_
|
|
| 205 |
negative_pooled_prompt_embeds,
|
| 206 |
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 207 |
|
| 208 |
-
#
|
| 209 |
-
|
| 210 |
-
# `mask_image` defines the area to be filled (white=fill, black=keep).
|
| 211 |
-
# Our mask is inverted (black=keep, white=fill). Invert it.
|
| 212 |
-
inverted_mask = Image.fromarray(255 - np.array(mask))
|
| 213 |
-
|
| 214 |
-
# Run the pipeline
|
| 215 |
-
# Note: The generator inside the pipeline call is not used here as we only need the final result.
|
| 216 |
-
# We iterate once to get the final image.
|
| 217 |
-
generated_image = None
|
| 218 |
-
for img_output in pipe(
|
| 219 |
prompt_embeds=prompt_embeds,
|
| 220 |
negative_prompt_embeds=negative_prompt_embeds,
|
| 221 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 222 |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 223 |
-
image=
|
| 224 |
-
|
| 225 |
-
control_image=background, # ControlNet Union might need the full image context
|
| 226 |
-
num_inference_steps=num_inference_steps,
|
| 227 |
-
output_type="pil" # Ensure PIL images are returned
|
| 228 |
):
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
if generated_image is None:
|
| 232 |
-
raise gr.Error("Image generation failed.")
|
| 233 |
-
|
| 234 |
-
# The pipeline should return the complete image already composited.
|
| 235 |
-
# No need to manually paste.
|
| 236 |
-
final_image = generated_image.convert("RGB")
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
|
|
|
|
| 241 |
|
| 242 |
def clear_result():
|
| 243 |
-
"""Clears the result Image
|
| 244 |
return gr.update(value=None)
|
| 245 |
|
| 246 |
def preload_presets(target_ratio, ui_width, ui_height):
|
|
@@ -248,21 +211,19 @@ def preload_presets(target_ratio, ui_width, ui_height):
|
|
| 248 |
if target_ratio == "9:16":
|
| 249 |
changed_width = 720
|
| 250 |
changed_height = 1280
|
| 251 |
-
return changed_width, changed_height, gr.update(
|
| 252 |
elif target_ratio == "16:9":
|
| 253 |
changed_width = 1280
|
| 254 |
changed_height = 720
|
| 255 |
-
return changed_width, changed_height, gr.update(
|
| 256 |
elif target_ratio == "1:1":
|
| 257 |
changed_width = 1024
|
| 258 |
changed_height = 1024
|
| 259 |
-
return changed_width, changed_height, gr.update(
|
| 260 |
elif target_ratio == "Custom":
|
| 261 |
-
# Keep current slider values but open the accordion
|
| 262 |
return ui_width, ui_height, gr.update(open=True)
|
| 263 |
|
| 264 |
def select_the_right_preset(user_width, user_height):
|
| 265 |
-
"""Selects the preset radio button based on current width/height."""
|
| 266 |
if user_width == 720 and user_height == 1280:
|
| 267 |
return "9:16"
|
| 268 |
elif user_width == 1280 and user_height == 720:
|
|
@@ -273,49 +234,24 @@ def select_the_right_preset(user_width, user_height):
|
|
| 273 |
return "Custom"
|
| 274 |
|
| 275 |
def toggle_custom_resize_slider(resize_option):
|
| 276 |
-
"""Shows/hides the custom resize slider."""
|
| 277 |
return gr.update(visible=(resize_option == "Custom"))
|
| 278 |
|
| 279 |
def update_history(new_image, history):
|
| 280 |
"""Updates the history gallery with the new image."""
|
| 281 |
-
if new_image is None: # Don't add None to history
|
| 282 |
-
return history
|
| 283 |
if history is None:
|
| 284 |
history = []
|
| 285 |
-
# Prepend the new image (as PIL) to the history list
|
| 286 |
history.insert(0, new_image)
|
| 287 |
-
# Limit history size if desired (e.g., keep last 12)
|
| 288 |
-
max_history = 12
|
| 289 |
-
if len(history) > max_history:
|
| 290 |
-
history = history[:max_history]
|
| 291 |
return history
|
| 292 |
|
| 293 |
-
# --- Gradio UI ---
|
| 294 |
-
|
| 295 |
css = """
|
| 296 |
.gradio-container {
|
| 297 |
-
|
| 298 |
-
margin: auto; /* Center the container */
|
| 299 |
-
}
|
| 300 |
-
/* Ensure gallery items are reasonably sized */
|
| 301 |
-
#history_gallery .thumbnail-item {
|
| 302 |
-
height: 100px !important; /* Adjust as needed */
|
| 303 |
-
}
|
| 304 |
-
#history_gallery .gallery {
|
| 305 |
-
grid-template-columns: repeat(auto-fill, minmax(100px, 1fr)) !important; /* Adjust column size */
|
| 306 |
}
|
| 307 |
-
|
|
|
|
| 308 |
"""
|
| 309 |
|
| 310 |
-
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
| 311 |
-
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
|
| 312 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 313 |
-
<p style="display: flex;gap: 6px;">
|
| 314 |
-
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpaint?duplicate=true">
|
| 315 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
| 316 |
-
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
| 317 |
-
</p>
|
| 318 |
-
</div>
|
| 319 |
"""
|
| 320 |
|
| 321 |
with gr.Blocks(css=css) as demo:
|
|
@@ -323,7 +259,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 323 |
gr.HTML(title)
|
| 324 |
|
| 325 |
with gr.Row():
|
| 326 |
-
with gr.Column(
|
| 327 |
input_image = gr.Image(
|
| 328 |
type="pil",
|
| 329 |
label="Input Image"
|
|
@@ -331,65 +267,62 @@ with gr.Blocks(css=css) as demo:
|
|
| 331 |
|
| 332 |
with gr.Row():
|
| 333 |
with gr.Column(scale=2):
|
| 334 |
-
prompt_input = gr.Textbox(label="Prompt (Optional)"
|
| 335 |
-
with gr.Column(scale=1
|
| 336 |
-
run_button = gr.Button("Generate"
|
| 337 |
|
| 338 |
with gr.Row():
|
| 339 |
target_ratio = gr.Radio(
|
| 340 |
-
label="
|
| 341 |
choices=["9:16", "16:9", "1:1", "Custom"],
|
| 342 |
value="9:16",
|
| 343 |
scale=2
|
| 344 |
)
|
| 345 |
-
|
| 346 |
alignment_dropdown = gr.Dropdown(
|
| 347 |
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
| 348 |
value="Middle",
|
| 349 |
-
label="
|
| 350 |
)
|
| 351 |
|
| 352 |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
| 353 |
with gr.Column():
|
| 354 |
with gr.Row():
|
| 355 |
width_slider = gr.Slider(
|
| 356 |
-
label="Target Width
|
| 357 |
-
minimum=
|
| 358 |
-
maximum=
|
| 359 |
-
step=
|
| 360 |
value=720,
|
| 361 |
)
|
| 362 |
height_slider = gr.Slider(
|
| 363 |
-
label="Target Height
|
| 364 |
-
minimum=
|
| 365 |
-
maximum=
|
| 366 |
-
step=
|
| 367 |
value=1280,
|
| 368 |
)
|
| 369 |
-
|
| 370 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=
|
| 371 |
with gr.Group():
|
| 372 |
overlap_percentage = gr.Slider(
|
| 373 |
label="Mask overlap (%)",
|
| 374 |
minimum=1,
|
| 375 |
maximum=50,
|
| 376 |
value=10,
|
| 377 |
-
step=1
|
| 378 |
-
info="How much the new area overlaps the original image."
|
| 379 |
)
|
| 380 |
-
gr.Markdown("Select sides to overlap (influences mask generation):")
|
| 381 |
with gr.Row():
|
| 382 |
-
overlap_top = gr.Checkbox(label="Top", value=True)
|
| 383 |
-
overlap_right = gr.Checkbox(label="Right", value=True)
|
| 384 |
with gr.Row():
|
| 385 |
-
overlap_left = gr.Checkbox(label="Left", value=True)
|
| 386 |
-
overlap_bottom = gr.Checkbox(label="Bottom", value=True)
|
| 387 |
with gr.Row():
|
| 388 |
resize_option = gr.Radio(
|
| 389 |
-
label="Resize input image
|
| 390 |
choices=["Full", "50%", "33%", "25%", "Custom"],
|
| 391 |
-
value="Full"
|
| 392 |
-
info="Scales the source image down before placing it on the target canvas."
|
| 393 |
)
|
| 394 |
custom_resize_percentage = gr.Slider(
|
| 395 |
label="Custom resize (%)",
|
|
@@ -399,67 +332,37 @@ with gr.Blocks(css=css) as demo:
|
|
| 399 |
value=50,
|
| 400 |
visible=False
|
| 401 |
)
|
| 402 |
-
|
| 403 |
with gr.Column():
|
| 404 |
-
preview_button = gr.Button("Preview
|
| 405 |
-
|
| 406 |
-
|
| 407 |
gr.Examples(
|
| 408 |
examples=[
|
| 409 |
-
["./examples/example_1.webp", 1280, 720, "Middle"
|
| 410 |
-
["./examples/example_2.jpg", 1440, 810, "Left"
|
| 411 |
-
["./examples/example_3.jpg", 1024, 1024, "Top"
|
| 412 |
-
["./examples/example_3.jpg", 1024, 1024, "Bottom"
|
| 413 |
],
|
| 414 |
-
inputs=[input_image, width_slider, height_slider, alignment_dropdown
|
| 415 |
-
label="Examples (Click to load)"
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
with gr.Column(scale=1): # Output column
|
| 419 |
-
# Replace ImageSlider with gr.Image
|
| 420 |
-
result_image = gr.Image(
|
| 421 |
-
label="Generated Image",
|
| 422 |
-
interactive=False,
|
| 423 |
-
show_download_button=True,
|
| 424 |
-
type="pil" # Ensure output is PIL for history
|
| 425 |
)
|
| 426 |
-
with gr.Row():
|
| 427 |
-
use_as_input_button = gr.Button("Use as Input", visible=False)
|
| 428 |
-
clear_button = gr.Button("Clear Output") # Added clear button
|
| 429 |
-
|
| 430 |
-
preview_mask_image = gr.Image(label="Alignment & Mask Preview", interactive=False)
|
| 431 |
-
|
| 432 |
-
history_gallery = gr.Gallery(
|
| 433 |
-
label="History",
|
| 434 |
-
columns=4, # Adjust columns as needed
|
| 435 |
-
object_fit="contain",
|
| 436 |
-
interactive=False,
|
| 437 |
-
show_label=True,
|
| 438 |
-
elem_id="history_gallery",
|
| 439 |
-
height=300 # Set a fixed height for the gallery area
|
| 440 |
-
)
|
| 441 |
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
-
|
|
|
|
| 444 |
|
| 445 |
-
def use_output_as_input(
|
| 446 |
-
"""Sets the generated output
|
| 447 |
-
|
| 448 |
-
return gr.update(value=output_pil_image)
|
| 449 |
|
| 450 |
use_as_input_button.click(
|
| 451 |
fn=use_output_as_input,
|
| 452 |
-
inputs=[
|
| 453 |
outputs=[input_image]
|
| 454 |
)
|
| 455 |
-
|
| 456 |
-
clear_button.click(
|
| 457 |
-
fn=lambda: (gr.update(value=None), gr.update(visible=False), gr.update(value=None)), # Clear image, hide button, clear preview
|
| 458 |
-
inputs=None,
|
| 459 |
-
outputs=[result_image, use_as_input_button, preview_mask_image],
|
| 460 |
-
queue=False
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
target_ratio.change(
|
| 464 |
fn=preload_presets,
|
| 465 |
inputs=[target_ratio, width_slider, height_slider],
|
|
@@ -467,18 +370,17 @@ with gr.Blocks(css=css) as demo:
|
|
| 467 |
queue=False
|
| 468 |
)
|
| 469 |
|
| 470 |
-
# Link sliders back to ratio selector and potentially open accordion
|
| 471 |
width_slider.change(
|
| 472 |
-
fn=
|
| 473 |
inputs=[width_slider, height_slider],
|
| 474 |
-
outputs=[target_ratio
|
| 475 |
queue=False
|
| 476 |
)
|
| 477 |
|
| 478 |
height_slider.change(
|
| 479 |
-
|
| 480 |
inputs=[width_slider, height_slider],
|
| 481 |
-
outputs=[target_ratio
|
| 482 |
queue=False
|
| 483 |
)
|
| 484 |
|
|
@@ -488,59 +390,53 @@ with gr.Blocks(css=css) as demo:
|
|
| 488 |
outputs=[custom_resize_percentage],
|
| 489 |
queue=False
|
| 490 |
)
|
| 491 |
-
|
| 492 |
-
# Define common inputs for generation
|
| 493 |
-
gen_inputs = [
|
| 494 |
-
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 495 |
-
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 496 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom
|
| 497 |
-
]
|
| 498 |
-
|
| 499 |
-
# Define common steps after generation
|
| 500 |
-
def handle_output(generated_image, current_history):
|
| 501 |
-
# generated_image is the single PIL image from infer
|
| 502 |
-
new_history = update_history(generated_image, current_history)
|
| 503 |
-
button_visibility = gr.update(visible=True) if generated_image else gr.update(visible=False)
|
| 504 |
-
return generated_image, new_history, button_visibility
|
| 505 |
-
|
| 506 |
run_button.click(
|
| 507 |
-
fn=
|
| 508 |
inputs=None,
|
| 509 |
-
outputs=
|
| 510 |
-
queue=False # Don't queue the clearing part
|
| 511 |
).then(
|
| 512 |
-
fn=infer,
|
| 513 |
-
inputs=
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
).then(
|
| 516 |
-
fn=
|
| 517 |
-
inputs=
|
| 518 |
-
outputs=
|
| 519 |
)
|
| 520 |
|
| 521 |
prompt_input.submit(
|
| 522 |
-
|
| 523 |
inputs=None,
|
| 524 |
-
outputs=
|
| 525 |
-
queue=False # Don't queue the clearing part
|
| 526 |
).then(
|
| 527 |
-
fn=infer,
|
| 528 |
-
inputs=
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
).then(
|
| 531 |
-
fn=
|
| 532 |
-
inputs=
|
| 533 |
-
outputs=
|
| 534 |
)
|
| 535 |
|
| 536 |
-
|
| 537 |
preview_button.click(
|
| 538 |
fn=preview_image_and_mask,
|
| 539 |
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
| 540 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 541 |
-
outputs=
|
| 542 |
-
queue=False
|
| 543 |
)
|
| 544 |
|
| 545 |
-
|
| 546 |
-
demo.queue(max_size=12).launch(share=False, ssr_mode=False, show_error=True)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from diffusers import AutoencoderKL, TCDScheduler
|
| 5 |
from diffusers.models.model_loading_utils import load_state_dict
|
|
|
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
from controlnet_union import ControlNetModel_Union
|
|
|
|
| 11 |
from PIL import Image, ImageDraw
|
| 12 |
import numpy as np
|
| 13 |
|
|
|
|
| 14 |
config_file = hf_hub_download(
|
| 15 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 16 |
filename="config_promax.json",
|
|
|
|
| 22 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 23 |
filename="diffusion_pytorch_model_promax.safetensors",
|
| 24 |
)
|
| 25 |
+
|
| 26 |
+
sstate_dict = load_state_dict(model_file)
|
| 27 |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 28 |
+
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 29 |
)
|
| 30 |
model.to(device="cuda", dtype=torch.float16)
|
| 31 |
|
|
|
|
| 43 |
|
| 44 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 45 |
|
|
|
|
|
|
|
| 46 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 47 |
"""Checks if the image can be expanded based on the alignment."""
|
| 48 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
|
|
|
| 58 |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 59 |
new_width = int(image.width * scale_factor)
|
| 60 |
new_height = int(image.height * scale_factor)
|
| 61 |
+
|
| 62 |
# Resize the source image to fit within target size
|
| 63 |
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 64 |
|
|
|
|
| 130 |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
| 131 |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 132 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
| 133 |
+
|
| 134 |
if alignment == "Left":
|
| 135 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 136 |
elif alignment == "Right":
|
|
|
|
| 140 |
elif alignment == "Bottom":
|
| 141 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
| 142 |
|
|
|
|
| 143 |
# Draw the mask
|
| 144 |
mask_draw.rectangle([
|
| 145 |
(left_overlap, top_overlap),
|
|
|
|
| 150 |
|
| 151 |
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 152 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 153 |
+
|
| 154 |
# Create a preview image showing the mask
|
| 155 |
preview = background.copy().convert('RGBA')
|
| 156 |
+
|
| 157 |
# Create a semi-transparent red overlay
|
| 158 |
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
| 159 |
+
|
| 160 |
# Convert black pixels in the mask to semi-transparent red
|
| 161 |
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
| 162 |
red_mask.paste(red_overlay, (0, 0), mask)
|
| 163 |
+
|
| 164 |
# Overlay the red mask on the background
|
| 165 |
preview = Image.alpha_composite(preview, red_mask)
|
| 166 |
+
|
| 167 |
return preview
|
| 168 |
|
| 169 |
@spaces.GPU(duration=24)
|
| 170 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
|
|
|
|
|
|
|
|
|
| 171 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 172 |
+
|
| 173 |
if not can_expand(background.width, background.height, width, height, alignment):
|
|
|
|
|
|
|
| 174 |
alignment = "Middle"
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
cnet_image = background.copy()
|
| 177 |
+
cnet_image.paste(0, (0, 0), mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
final_prompt = f"{prompt_input} , high quality, 4k"
|
| 180 |
|
| 181 |
(
|
| 182 |
prompt_embeds,
|
|
|
|
| 185 |
negative_pooled_prompt_embeds,
|
| 186 |
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 187 |
|
| 188 |
+
# Generate the image
|
| 189 |
+
for image in pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
prompt_embeds=prompt_embeds,
|
| 191 |
negative_prompt_embeds=negative_prompt_embeds,
|
| 192 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 193 |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 194 |
+
image=cnet_image,
|
| 195 |
+
num_inference_steps=num_inference_steps
|
|
|
|
|
|
|
|
|
|
| 196 |
):
|
| 197 |
+
pass # Wait for the generation to complete
|
| 198 |
+
generated_image = image # Get the last image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
generated_image = generated_image.convert("RGBA")
|
| 201 |
+
cnet_image.paste(generated_image, (0, 0), mask)
|
| 202 |
|
| 203 |
+
return cnet_image
|
| 204 |
|
| 205 |
def clear_result():
|
| 206 |
+
"""Clears the result Image."""
|
| 207 |
return gr.update(value=None)
|
| 208 |
|
| 209 |
def preload_presets(target_ratio, ui_width, ui_height):
|
|
|
|
| 211 |
if target_ratio == "9:16":
|
| 212 |
changed_width = 720
|
| 213 |
changed_height = 1280
|
| 214 |
+
return changed_width, changed_height, gr.update()
|
| 215 |
elif target_ratio == "16:9":
|
| 216 |
changed_width = 1280
|
| 217 |
changed_height = 720
|
| 218 |
+
return changed_width, changed_height, gr.update()
|
| 219 |
elif target_ratio == "1:1":
|
| 220 |
changed_width = 1024
|
| 221 |
changed_height = 1024
|
| 222 |
+
return changed_width, changed_height, gr.update()
|
| 223 |
elif target_ratio == "Custom":
|
|
|
|
| 224 |
return ui_width, ui_height, gr.update(open=True)
|
| 225 |
|
| 226 |
def select_the_right_preset(user_width, user_height):
|
|
|
|
| 227 |
if user_width == 720 and user_height == 1280:
|
| 228 |
return "9:16"
|
| 229 |
elif user_width == 1280 and user_height == 720:
|
|
|
|
| 234 |
return "Custom"
|
| 235 |
|
| 236 |
def toggle_custom_resize_slider(resize_option):
|
|
|
|
| 237 |
return gr.update(visible=(resize_option == "Custom"))
|
| 238 |
|
| 239 |
def update_history(new_image, history):
|
| 240 |
"""Updates the history gallery with the new image."""
|
|
|
|
|
|
|
| 241 |
if history is None:
|
| 242 |
history = []
|
|
|
|
| 243 |
history.insert(0, new_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
return history
|
| 245 |
|
|
|
|
|
|
|
| 246 |
css = """
|
| 247 |
.gradio-container {
|
| 248 |
+
width: 1200px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
}
|
| 250 |
+
h1 { text-align: center; }
|
| 251 |
+
footer { visibility: hidden; }
|
| 252 |
"""
|
| 253 |
|
| 254 |
+
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
"""
|
| 256 |
|
| 257 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 259 |
gr.HTML(title)
|
| 260 |
|
| 261 |
with gr.Row():
|
| 262 |
+
with gr.Column():
|
| 263 |
input_image = gr.Image(
|
| 264 |
type="pil",
|
| 265 |
label="Input Image"
|
|
|
|
| 267 |
|
| 268 |
with gr.Row():
|
| 269 |
with gr.Column(scale=2):
|
| 270 |
+
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
| 271 |
+
with gr.Column(scale=1):
|
| 272 |
+
run_button = gr.Button("Generate")
|
| 273 |
|
| 274 |
with gr.Row():
|
| 275 |
target_ratio = gr.Radio(
|
| 276 |
+
label="Expected Ratio",
|
| 277 |
choices=["9:16", "16:9", "1:1", "Custom"],
|
| 278 |
value="9:16",
|
| 279 |
scale=2
|
| 280 |
)
|
| 281 |
+
|
| 282 |
alignment_dropdown = gr.Dropdown(
|
| 283 |
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
| 284 |
value="Middle",
|
| 285 |
+
label="Alignment"
|
| 286 |
)
|
| 287 |
|
| 288 |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
| 289 |
with gr.Column():
|
| 290 |
with gr.Row():
|
| 291 |
width_slider = gr.Slider(
|
| 292 |
+
label="Target Width",
|
| 293 |
+
minimum=720,
|
| 294 |
+
maximum=1536,
|
| 295 |
+
step=8,
|
| 296 |
value=720,
|
| 297 |
)
|
| 298 |
height_slider = gr.Slider(
|
| 299 |
+
label="Target Height",
|
| 300 |
+
minimum=720,
|
| 301 |
+
maximum=1536,
|
| 302 |
+
step=8,
|
| 303 |
value=1280,
|
| 304 |
)
|
| 305 |
+
|
| 306 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
| 307 |
with gr.Group():
|
| 308 |
overlap_percentage = gr.Slider(
|
| 309 |
label="Mask overlap (%)",
|
| 310 |
minimum=1,
|
| 311 |
maximum=50,
|
| 312 |
value=10,
|
| 313 |
+
step=1
|
|
|
|
| 314 |
)
|
|
|
|
| 315 |
with gr.Row():
|
| 316 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 317 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 318 |
with gr.Row():
|
| 319 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 320 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 321 |
with gr.Row():
|
| 322 |
resize_option = gr.Radio(
|
| 323 |
+
label="Resize input image",
|
| 324 |
choices=["Full", "50%", "33%", "25%", "Custom"],
|
| 325 |
+
value="Full"
|
|
|
|
| 326 |
)
|
| 327 |
custom_resize_percentage = gr.Slider(
|
| 328 |
label="Custom resize (%)",
|
|
|
|
| 332 |
value=50,
|
| 333 |
visible=False
|
| 334 |
)
|
| 335 |
+
|
| 336 |
with gr.Column():
|
| 337 |
+
preview_button = gr.Button("Preview alignment and mask")
|
| 338 |
+
|
|
|
|
| 339 |
gr.Examples(
|
| 340 |
examples=[
|
| 341 |
+
["./examples/example_1.webp", 1280, 720, "Middle"],
|
| 342 |
+
["./examples/example_2.jpg", 1440, 810, "Left"],
|
| 343 |
+
["./examples/example_3.jpg", 1024, 1024, "Top"],
|
| 344 |
+
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
| 345 |
],
|
| 346 |
+
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
+
with gr.Column():
|
| 350 |
+
result = gr.Image(label="Generated Image", type="pil")
|
| 351 |
+
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 352 |
|
| 353 |
+
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 354 |
+
preview_image = gr.Image(label="Preview")
|
| 355 |
|
| 356 |
+
def use_output_as_input(output_image):
|
| 357 |
+
"""Sets the generated output as the new input image."""
|
| 358 |
+
return gr.update(value=output_image)
|
|
|
|
| 359 |
|
| 360 |
use_as_input_button.click(
|
| 361 |
fn=use_output_as_input,
|
| 362 |
+
inputs=[result],
|
| 363 |
outputs=[input_image]
|
| 364 |
)
|
| 365 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
target_ratio.change(
|
| 367 |
fn=preload_presets,
|
| 368 |
inputs=[target_ratio, width_slider, height_slider],
|
|
|
|
| 370 |
queue=False
|
| 371 |
)
|
| 372 |
|
|
|
|
| 373 |
width_slider.change(
|
| 374 |
+
fn=select_the_right_preset,
|
| 375 |
inputs=[width_slider, height_slider],
|
| 376 |
+
outputs=[target_ratio],
|
| 377 |
queue=False
|
| 378 |
)
|
| 379 |
|
| 380 |
height_slider.change(
|
| 381 |
+
fn=select_the_right_preset,
|
| 382 |
inputs=[width_slider, height_slider],
|
| 383 |
+
outputs=[target_ratio],
|
| 384 |
queue=False
|
| 385 |
)
|
| 386 |
|
|
|
|
| 390 |
outputs=[custom_resize_percentage],
|
| 391 |
queue=False
|
| 392 |
)
|
| 393 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
run_button.click(
|
| 395 |
+
fn=clear_result,
|
| 396 |
inputs=None,
|
| 397 |
+
outputs=result,
|
|
|
|
| 398 |
).then(
|
| 399 |
+
fn=infer,
|
| 400 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 401 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 402 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 403 |
+
outputs=result,
|
| 404 |
+
).then(
|
| 405 |
+
fn=lambda x, history: update_history(x, history),
|
| 406 |
+
inputs=[result, history_gallery],
|
| 407 |
+
outputs=history_gallery,
|
| 408 |
).then(
|
| 409 |
+
fn=lambda: gr.update(visible=True),
|
| 410 |
+
inputs=None,
|
| 411 |
+
outputs=use_as_input_button,
|
| 412 |
)
|
| 413 |
|
| 414 |
prompt_input.submit(
|
| 415 |
+
fn=clear_result,
|
| 416 |
inputs=None,
|
| 417 |
+
outputs=result,
|
|
|
|
| 418 |
).then(
|
| 419 |
+
fn=infer,
|
| 420 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 421 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 422 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 423 |
+
outputs=result,
|
| 424 |
+
).then(
|
| 425 |
+
fn=lambda x, history: update_history(x, history),
|
| 426 |
+
inputs=[result, history_gallery],
|
| 427 |
+
outputs=history_gallery,
|
| 428 |
).then(
|
| 429 |
+
fn=lambda: gr.update(visible=True),
|
| 430 |
+
inputs=None,
|
| 431 |
+
outputs=use_as_input_button,
|
| 432 |
)
|
| 433 |
|
|
|
|
| 434 |
preview_button.click(
|
| 435 |
fn=preview_image_and_mask,
|
| 436 |
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
| 437 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 438 |
+
outputs=preview_image,
|
| 439 |
+
queue=False
|
| 440 |
)
|
| 441 |
|
| 442 |
+
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)
|
|
|