Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ import numpy as np
|
|
| 17 |
from PIL import Image
|
| 18 |
import edge_tts
|
| 19 |
import trimesh
|
| 20 |
-
import soundfile as sf #
|
| 21 |
|
| 22 |
import supervision as sv
|
| 23 |
from ultralytics import YOLO as YOLODetector
|
|
@@ -36,13 +36,7 @@ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
| 36 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
| 37 |
from diffusers.utils import export_to_ply
|
| 38 |
|
| 39 |
-
# Additional imports for the new DeepseekR1 feature and FastAPI endpoints
|
| 40 |
-
import openai
|
| 41 |
-
from fastapi import FastAPI, HTTPException
|
| 42 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 43 |
-
|
| 44 |
os.system('pip install backoff')
|
| 45 |
-
|
| 46 |
# Global constants and helper functions
|
| 47 |
|
| 48 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -62,72 +56,14 @@ def glb_to_data_url(glb_path: str) -> str:
|
|
| 62 |
b64_data = base64.b64encode(data).decode("utf-8")
|
| 63 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
| 64 |
|
| 65 |
-
# ---------------------------
|
| 66 |
-
# Sambanova DeepseekR1 Clients and Chat Function
|
| 67 |
-
# ---------------------------
|
| 68 |
-
sambanova_client = openai.OpenAI(
|
| 69 |
-
api_key=os.environ.get("SAMBANOVA_API_KEY"),
|
| 70 |
-
base_url="https://api.sambanova.ai/v1",
|
| 71 |
-
)
|
| 72 |
-
sambanova_client2 = openai.OpenAI(
|
| 73 |
-
api_key=os.environ.get("SAMBANOVA_API_KEY_2"),
|
| 74 |
-
base_url="https://api.sambanova.ai/v1",
|
| 75 |
-
)
|
| 76 |
-
sambanova_client3 = openai.OpenAI(
|
| 77 |
-
api_key=os.environ.get("SAMBANOVA_API_KEY_3"),
|
| 78 |
-
base_url="https://api.sambanova.ai/v1",
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
def chat_response(prompt: str) -> str:
|
| 82 |
-
"""
|
| 83 |
-
Generate a chat response using the primary Sambanova API.
|
| 84 |
-
If it fails, fallback to the second, and then the third API.
|
| 85 |
-
"""
|
| 86 |
-
messages = [
|
| 87 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
| 88 |
-
{"role": "user", "content": prompt},
|
| 89 |
-
]
|
| 90 |
-
errors = {}
|
| 91 |
-
try:
|
| 92 |
-
response = sambanova_client.chat.completions.create(
|
| 93 |
-
model="DeepSeek-R1-Distill-Llama-70B",
|
| 94 |
-
messages=messages,
|
| 95 |
-
temperature=0.1,
|
| 96 |
-
top_p=0.1
|
| 97 |
-
)
|
| 98 |
-
return response.choices[0].message.content
|
| 99 |
-
except Exception as e:
|
| 100 |
-
errors['client1'] = str(e)
|
| 101 |
-
try:
|
| 102 |
-
response2 = sambanova_client2.chat.completions.create(
|
| 103 |
-
model="DeepSeek-R1-Distill-Llama-70B",
|
| 104 |
-
messages=messages,
|
| 105 |
-
temperature=0.1,
|
| 106 |
-
top_p=0.1
|
| 107 |
-
)
|
| 108 |
-
return response2.choices[0].message.content
|
| 109 |
-
except Exception as e2:
|
| 110 |
-
errors['client2'] = str(e2)
|
| 111 |
-
try:
|
| 112 |
-
response3 = sambanova_client3.chat.completions.create(
|
| 113 |
-
model="DeepSeek-R1-Distill-Llama-70B",
|
| 114 |
-
messages=messages,
|
| 115 |
-
temperature=0.1,
|
| 116 |
-
top_p=0.1
|
| 117 |
-
)
|
| 118 |
-
return response3.choices[0].message.content
|
| 119 |
-
except Exception as e3:
|
| 120 |
-
errors['client3'] = str(e3)
|
| 121 |
-
return f"Primary error: {errors['client1']}; Second error: {errors['client2']}; Third error: {errors['client3']}"
|
| 122 |
-
|
| 123 |
-
# ---------------------------
|
| 124 |
# Model class for Text-to-3D Generation (ShapE)
|
| 125 |
-
|
| 126 |
class Model:
|
| 127 |
def __init__(self):
|
| 128 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 129 |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
| 130 |
self.pipe.to(self.device)
|
|
|
|
| 131 |
if torch.cuda.is_available():
|
| 132 |
try:
|
| 133 |
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
|
@@ -136,6 +72,7 @@ class Model:
|
|
| 136 |
|
| 137 |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
| 138 |
self.pipe_img.to(self.device)
|
|
|
|
| 139 |
if torch.cuda.is_available():
|
| 140 |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
| 141 |
if text_encoder_img is not None:
|
|
@@ -143,6 +80,7 @@ class Model:
|
|
| 143 |
|
| 144 |
def to_glb(self, ply_path: str) -> str:
|
| 145 |
mesh = trimesh.load(ply_path)
|
|
|
|
| 146 |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
| 147 |
mesh.apply_transform(rot)
|
| 148 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
|
@@ -177,9 +115,8 @@ class Model:
|
|
| 177 |
export_to_ply(images[0], ply_path.name)
|
| 178 |
return self.to_glb(ply_path.name)
|
| 179 |
|
| 180 |
-
# ---------------------------
|
| 181 |
# New Tools for Web Functionality using DuckDuckGo and smolagents
|
| 182 |
-
|
| 183 |
from typing import Any, Optional
|
| 184 |
from smolagents.tools import Tool
|
| 185 |
import duckduckgo_search
|
|
@@ -231,21 +168,27 @@ class VisitWebpageTool(Tool):
|
|
| 231 |
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
|
| 232 |
) from e
|
| 233 |
try:
|
|
|
|
| 234 |
response = requests.get(url, timeout=20)
|
| 235 |
-
response.raise_for_status()
|
|
|
|
|
|
|
| 236 |
markdown_content = markdownify(response.text).strip()
|
|
|
|
|
|
|
| 237 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
|
|
|
| 238 |
return truncate_content(markdown_content, 10000)
|
|
|
|
| 239 |
except requests.exceptions.Timeout:
|
| 240 |
return "The request timed out. Please try again later or check the URL."
|
| 241 |
except RequestException as e:
|
| 242 |
return f"Error fetching the webpage: {str(e)}"
|
| 243 |
except Exception as e:
|
| 244 |
return f"An unexpected error occurred: {str(e)}"
|
| 245 |
-
|
| 246 |
-
# ---------------------------
|
| 247 |
# rAgent Reasoning using Llama mode OpenAI
|
| 248 |
-
|
| 249 |
from openai import OpenAI
|
| 250 |
|
| 251 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -270,6 +213,7 @@ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, t
|
|
| 270 |
Uses the Llama mode OpenAI model to perform a structured reasoning chain.
|
| 271 |
"""
|
| 272 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
|
|
|
| 273 |
for msg in history:
|
| 274 |
if msg.get("role") == "user":
|
| 275 |
messages.append({"role": "user", "content": msg["content"]})
|
|
@@ -293,10 +237,12 @@ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, t
|
|
| 293 |
# ------------------------------------------------------------------------------
|
| 294 |
# New Phi-4 Multimodal Feature (Image & Audio)
|
| 295 |
# ------------------------------------------------------------------------------
|
|
|
|
| 296 |
phi4_user_prompt = '<|user|>'
|
| 297 |
phi4_assistant_prompt = '<|assistant|>'
|
| 298 |
phi4_prompt_suffix = '<|end|>'
|
| 299 |
|
|
|
|
| 300 |
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
| 301 |
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
| 302 |
phi4_model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -330,9 +276,9 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 330 |
|
| 331 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 332 |
|
| 333 |
-
# ---------------------------
|
| 334 |
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
|
| 335 |
-
#
|
|
|
|
| 336 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 337 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 338 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -342,11 +288,13 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 342 |
)
|
| 343 |
model.eval()
|
| 344 |
|
|
|
|
| 345 |
TTS_VOICES = [
|
| 346 |
-
"en-US-JennyNeural",
|
| 347 |
-
"en-US-GuyNeural",
|
| 348 |
]
|
| 349 |
|
|
|
|
| 350 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 351 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 352 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
@@ -355,15 +303,20 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 355 |
torch_dtype=torch.float16
|
| 356 |
).to("cuda").eval()
|
| 357 |
|
|
|
|
|
|
|
| 358 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 359 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
| 360 |
communicate = edge_tts.Communicate(text, voice)
|
| 361 |
await communicate.save(output_file)
|
| 362 |
return output_file
|
| 363 |
|
|
|
|
|
|
|
| 364 |
def clean_chat_history(chat_history):
|
| 365 |
"""
|
| 366 |
Filter out any chat entries whose "content" is not a string.
|
|
|
|
| 367 |
"""
|
| 368 |
cleaned = []
|
| 369 |
for msg in chat_history:
|
|
@@ -371,14 +324,14 @@ def clean_chat_history(chat_history):
|
|
| 371 |
cleaned.append(msg)
|
| 372 |
return cleaned
|
| 373 |
|
| 374 |
-
# ---------------------------
|
| 375 |
# Stable Diffusion XL Pipeline for Image Generation
|
| 376 |
-
#
|
| 377 |
-
|
|
|
|
| 378 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 379 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 380 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 381 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 382 |
|
| 383 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 384 |
MODEL_ID_SD,
|
|
@@ -436,6 +389,7 @@ def generate_image_fn(
|
|
| 436 |
options["use_resolution_binning"] = True
|
| 437 |
|
| 438 |
images = []
|
|
|
|
| 439 |
for i in range(0, num_images, BATCH_SIZE):
|
| 440 |
batch_options = options.copy()
|
| 441 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
@@ -450,9 +404,8 @@ def generate_image_fn(
|
|
| 450 |
image_paths = [save_image(img) for img in images]
|
| 451 |
return image_paths, seed
|
| 452 |
|
| 453 |
-
# ---------------------------
|
| 454 |
# Text-to-3D Generation using the ShapE Pipeline
|
| 455 |
-
|
| 456 |
@spaces.GPU(duration=120, enable_queue=True)
|
| 457 |
def generate_3d_fn(
|
| 458 |
prompt: str,
|
|
@@ -470,9 +423,7 @@ def generate_3d_fn(
|
|
| 470 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 471 |
return glb_path, seed
|
| 472 |
|
| 473 |
-
# ---------------------------
|
| 474 |
# YOLO Object Detection Setup
|
| 475 |
-
# ---------------------------
|
| 476 |
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
| 477 |
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
| 478 |
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
|
@@ -492,9 +443,8 @@ def detect_objects(image: np.ndarray):
|
|
| 492 |
|
| 493 |
return Image.fromarray(annotated_image)
|
| 494 |
|
| 495 |
-
#
|
| 496 |
-
|
| 497 |
-
# ---------------------------
|
| 498 |
@spaces.GPU
|
| 499 |
def generate(
|
| 500 |
input_dict: dict,
|
|
@@ -513,8 +463,7 @@ def generate(
|
|
| 513 |
- "@web": triggers a web search or webpage visit.
|
| 514 |
- "@rAgent": initiates a reasoning chain using Llama mode.
|
| 515 |
- "@yolo": triggers object detection using YOLO.
|
| 516 |
-
- "@phi4": triggers multimodal (image/audio) processing using the Phi-4 model
|
| 517 |
-
- **"@deepseekr1": queries the Sambanova DeepSeek-R1 model with fallback APIs.**
|
| 518 |
"""
|
| 519 |
text = input_dict["text"]
|
| 520 |
files = input_dict.get("files", [])
|
|
@@ -530,6 +479,7 @@ def generate(
|
|
| 530 |
num_steps=64,
|
| 531 |
randomize_seed=True,
|
| 532 |
)
|
|
|
|
| 533 |
static_folder = os.path.join(os.getcwd(), "static")
|
| 534 |
if not os.path.exists(static_folder):
|
| 535 |
os.makedirs(static_folder)
|
|
@@ -563,6 +513,7 @@ def generate(
|
|
| 563 |
# --- Web Search/Visit branch ---
|
| 564 |
if text.strip().lower().startswith("@web"):
|
| 565 |
web_command = text[len("@web"):].strip()
|
|
|
|
| 566 |
if web_command.lower().startswith("visit"):
|
| 567 |
url = web_command[len("visit"):].strip()
|
| 568 |
yield "π Visiting webpage..."
|
|
@@ -570,6 +521,7 @@ def generate(
|
|
| 570 |
content = visitor.forward(url)
|
| 571 |
yield content
|
| 572 |
else:
|
|
|
|
| 573 |
query = web_command
|
| 574 |
yield "π§€ Performing a web search ..."
|
| 575 |
searcher = DuckDuckGoSearchTool()
|
|
@@ -581,24 +533,18 @@ def generate(
|
|
| 581 |
if text.strip().lower().startswith("@ragent"):
|
| 582 |
prompt = text[len("@ragent"):].strip()
|
| 583 |
yield "π Initiating reasoning chain using Llama mode..."
|
|
|
|
| 584 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
| 585 |
yield partial
|
| 586 |
return
|
| 587 |
|
| 588 |
-
# --- DeepSeek-R1 branch ---
|
| 589 |
-
if text.strip().lower().startswith("@deepseekr1"):
|
| 590 |
-
prompt = text[len("@deepseekr1"):].strip()
|
| 591 |
-
# Directly return the response from the API
|
| 592 |
-
response = chat_response(prompt)
|
| 593 |
-
yield response
|
| 594 |
-
return
|
| 595 |
-
|
| 596 |
# --- YOLO Object Detection branch ---
|
| 597 |
if text.strip().lower().startswith("@yolo"):
|
| 598 |
yield "π Running object detection with YOLO..."
|
| 599 |
if not files or len(files) == 0:
|
| 600 |
yield "Error: Please attach an image for YOLO object detection."
|
| 601 |
return
|
|
|
|
| 602 |
input_file = files[0]
|
| 603 |
try:
|
| 604 |
if isinstance(input_file, str):
|
|
@@ -622,12 +568,15 @@ def generate(
|
|
| 622 |
if not question:
|
| 623 |
yield "Error: Please provide a question after @phi4."
|
| 624 |
return
|
|
|
|
| 625 |
input_file = files[0]
|
| 626 |
try:
|
|
|
|
| 627 |
if isinstance(input_file, Image.Image):
|
| 628 |
input_type = "Image"
|
| 629 |
file_for_phi4 = input_file
|
| 630 |
else:
|
|
|
|
| 631 |
try:
|
| 632 |
file_for_phi4 = Image.open(input_file)
|
| 633 |
input_type = "Image"
|
|
@@ -649,8 +598,10 @@ def generate(
|
|
| 649 |
yield "Invalid file type for @phi4 multimodal processing."
|
| 650 |
return
|
| 651 |
|
|
|
|
| 652 |
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
| 653 |
|
|
|
|
| 654 |
generation_kwargs = {
|
| 655 |
**inputs,
|
| 656 |
"streamer": streamer,
|
|
@@ -658,14 +609,16 @@ def generate(
|
|
| 658 |
"num_logits_to_keep": 0,
|
| 659 |
}
|
| 660 |
|
|
|
|
| 661 |
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
| 662 |
thread.start()
|
| 663 |
|
|
|
|
| 664 |
buffer = ""
|
| 665 |
yield "π€ Processing with Phi-4..."
|
| 666 |
for new_text in streamer:
|
| 667 |
buffer += new_text
|
| 668 |
-
time.sleep(0.01)
|
| 669 |
yield buffer
|
| 670 |
return
|
| 671 |
|
|
@@ -745,9 +698,8 @@ def generate(
|
|
| 745 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 746 |
yield gr.Audio(output_file, autoplay=True)
|
| 747 |
|
| 748 |
-
# ---------------------------
|
| 749 |
# Gradio Chat Interface Setup and Launch
|
| 750 |
-
|
| 751 |
demo = gr.ChatInterface(
|
| 752 |
fn=generate,
|
| 753 |
additional_inputs=[
|
|
@@ -779,39 +731,18 @@ demo = gr.ChatInterface(
|
|
| 779 |
label="Query Input",
|
| 780 |
file_types=["image", "audio"],
|
| 781 |
file_count="multiple",
|
| 782 |
-
placeholder="β @tts1, @tts2, @image, @3d, @phi4 [image, audio], @rAgent, @web, @yolo,
|
| 783 |
),
|
| 784 |
stop_btn="Stop Generation",
|
| 785 |
multimodal=True,
|
| 786 |
)
|
| 787 |
|
|
|
|
| 788 |
if not os.path.exists("static"):
|
| 789 |
os.makedirs("static")
|
| 790 |
|
| 791 |
from fastapi.staticfiles import StaticFiles
|
| 792 |
demo.app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 793 |
|
| 794 |
-
# ---------------------------
|
| 795 |
-
# Mount FastAPI Middleware and Endpoint for DeepSeek-R1
|
| 796 |
-
# ---------------------------
|
| 797 |
-
demo.app.add_middleware(
|
| 798 |
-
CORSMiddleware,
|
| 799 |
-
allow_origins=["*"],
|
| 800 |
-
allow_credentials=True,
|
| 801 |
-
allow_methods=["*"],
|
| 802 |
-
allow_headers=["*"],
|
| 803 |
-
)
|
| 804 |
-
|
| 805 |
-
@demo.app.post("/chat")
|
| 806 |
-
async def chat_endpoint(prompt: str):
|
| 807 |
-
"""
|
| 808 |
-
FastAPI endpoint for the Sambanova DeepSeek-R1 chatbot.
|
| 809 |
-
"""
|
| 810 |
-
result = chat_response(prompt)
|
| 811 |
-
return {"response": result}
|
| 812 |
-
|
| 813 |
-
# ---------------------------
|
| 814 |
-
# Main Execution
|
| 815 |
-
# ---------------------------
|
| 816 |
if __name__ == "__main__":
|
| 817 |
demo.queue(max_size=20).launch(share=True)
|
|
|
|
| 17 |
from PIL import Image
|
| 18 |
import edge_tts
|
| 19 |
import trimesh
|
| 20 |
+
import soundfile as sf # New import for audio file reading
|
| 21 |
|
| 22 |
import supervision as sv
|
| 23 |
from ultralytics import YOLO as YOLODetector
|
|
|
|
| 36 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
| 37 |
from diffusers.utils import export_to_ply
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
os.system('pip install backoff')
|
|
|
|
| 40 |
# Global constants and helper functions
|
| 41 |
|
| 42 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 56 |
b64_data = base64.b64encode(data).decode("utf-8")
|
| 57 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
# Model class for Text-to-3D Generation (ShapE)
|
| 60 |
+
|
| 61 |
class Model:
|
| 62 |
def __init__(self):
|
| 63 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
| 65 |
self.pipe.to(self.device)
|
| 66 |
+
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
| 67 |
if torch.cuda.is_available():
|
| 68 |
try:
|
| 69 |
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
|
|
|
| 72 |
|
| 73 |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
| 74 |
self.pipe_img.to(self.device)
|
| 75 |
+
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
| 76 |
if torch.cuda.is_available():
|
| 77 |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
| 78 |
if text_encoder_img is not None:
|
|
|
|
| 80 |
|
| 81 |
def to_glb(self, ply_path: str) -> str:
|
| 82 |
mesh = trimesh.load(ply_path)
|
| 83 |
+
# Rotate the mesh for proper orientation
|
| 84 |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
| 85 |
mesh.apply_transform(rot)
|
| 86 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
|
|
|
| 115 |
export_to_ply(images[0], ply_path.name)
|
| 116 |
return self.to_glb(ply_path.name)
|
| 117 |
|
|
|
|
| 118 |
# New Tools for Web Functionality using DuckDuckGo and smolagents
|
| 119 |
+
|
| 120 |
from typing import Any, Optional
|
| 121 |
from smolagents.tools import Tool
|
| 122 |
import duckduckgo_search
|
|
|
|
| 168 |
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
|
| 169 |
) from e
|
| 170 |
try:
|
| 171 |
+
# Send a GET request to the URL with a 20-second timeout
|
| 172 |
response = requests.get(url, timeout=20)
|
| 173 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 174 |
+
|
| 175 |
+
# Convert the HTML content to Markdown
|
| 176 |
markdown_content = markdownify(response.text).strip()
|
| 177 |
+
|
| 178 |
+
# Remove multiple line breaks
|
| 179 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 180 |
+
|
| 181 |
return truncate_content(markdown_content, 10000)
|
| 182 |
+
|
| 183 |
except requests.exceptions.Timeout:
|
| 184 |
return "The request timed out. Please try again later or check the URL."
|
| 185 |
except RequestException as e:
|
| 186 |
return f"Error fetching the webpage: {str(e)}"
|
| 187 |
except Exception as e:
|
| 188 |
return f"An unexpected error occurred: {str(e)}"
|
| 189 |
+
|
|
|
|
| 190 |
# rAgent Reasoning using Llama mode OpenAI
|
| 191 |
+
|
| 192 |
from openai import OpenAI
|
| 193 |
|
| 194 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 213 |
Uses the Llama mode OpenAI model to perform a structured reasoning chain.
|
| 214 |
"""
|
| 215 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
| 216 |
+
# Incorporate conversation history (if any)
|
| 217 |
for msg in history:
|
| 218 |
if msg.get("role") == "user":
|
| 219 |
messages.append({"role": "user", "content": msg["content"]})
|
|
|
|
| 237 |
# ------------------------------------------------------------------------------
|
| 238 |
# New Phi-4 Multimodal Feature (Image & Audio)
|
| 239 |
# ------------------------------------------------------------------------------
|
| 240 |
+
# Define prompt structure for Phi-4
|
| 241 |
phi4_user_prompt = '<|user|>'
|
| 242 |
phi4_assistant_prompt = '<|assistant|>'
|
| 243 |
phi4_prompt_suffix = '<|end|>'
|
| 244 |
|
| 245 |
+
# Load Phi-4 multimodal model and processor using unique variable names
|
| 246 |
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
| 247 |
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
| 248 |
phi4_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 276 |
|
| 277 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 278 |
|
|
|
|
| 279 |
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
|
| 280 |
+
# Load the text-only model and tokenizer (for pure text chat)
|
| 281 |
+
|
| 282 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 283 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 284 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 288 |
)
|
| 289 |
model.eval()
|
| 290 |
|
| 291 |
+
# Voices for text-to-speech
|
| 292 |
TTS_VOICES = [
|
| 293 |
+
"en-US-JennyNeural", # @tts1
|
| 294 |
+
"en-US-GuyNeural", # @tts2
|
| 295 |
]
|
| 296 |
|
| 297 |
+
# Load multimodal processor and model (e.g. for OCR and image processing)
|
| 298 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 299 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 300 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 303 |
torch_dtype=torch.float16
|
| 304 |
).to("cuda").eval()
|
| 305 |
|
| 306 |
+
# Asynchronous text-to-speech
|
| 307 |
+
|
| 308 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 309 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
| 310 |
communicate = edge_tts.Communicate(text, voice)
|
| 311 |
await communicate.save(output_file)
|
| 312 |
return output_file
|
| 313 |
|
| 314 |
+
# Utility function to clean conversation history
|
| 315 |
+
|
| 316 |
def clean_chat_history(chat_history):
|
| 317 |
"""
|
| 318 |
Filter out any chat entries whose "content" is not a string.
|
| 319 |
+
This helps prevent errors when concatenating previous messages.
|
| 320 |
"""
|
| 321 |
cleaned = []
|
| 322 |
for msg in chat_history:
|
|
|
|
| 324 |
cleaned.append(msg)
|
| 325 |
return cleaned
|
| 326 |
|
|
|
|
| 327 |
# Stable Diffusion XL Pipeline for Image Generation
|
| 328 |
+
# Model In Use : SG161222/RealVisXL_V5.0_Lightning
|
| 329 |
+
|
| 330 |
+
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
| 331 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 332 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 333 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 334 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
| 335 |
|
| 336 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 337 |
MODEL_ID_SD,
|
|
|
|
| 389 |
options["use_resolution_binning"] = True
|
| 390 |
|
| 391 |
images = []
|
| 392 |
+
# Process in batches
|
| 393 |
for i in range(0, num_images, BATCH_SIZE):
|
| 394 |
batch_options = options.copy()
|
| 395 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
|
| 404 |
image_paths = [save_image(img) for img in images]
|
| 405 |
return image_paths, seed
|
| 406 |
|
|
|
|
| 407 |
# Text-to-3D Generation using the ShapE Pipeline
|
| 408 |
+
|
| 409 |
@spaces.GPU(duration=120, enable_queue=True)
|
| 410 |
def generate_3d_fn(
|
| 411 |
prompt: str,
|
|
|
|
| 423 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 424 |
return glb_path, seed
|
| 425 |
|
|
|
|
| 426 |
# YOLO Object Detection Setup
|
|
|
|
| 427 |
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
| 428 |
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
| 429 |
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
|
|
|
| 443 |
|
| 444 |
return Image.fromarray(annotated_image)
|
| 445 |
|
| 446 |
+
# Chat Generation Function with support for @tts, @image, @3d, @web, @rAgent, @yolo, and now @phi4 commands
|
| 447 |
+
|
|
|
|
| 448 |
@spaces.GPU
|
| 449 |
def generate(
|
| 450 |
input_dict: dict,
|
|
|
|
| 463 |
- "@web": triggers a web search or webpage visit.
|
| 464 |
- "@rAgent": initiates a reasoning chain using Llama mode.
|
| 465 |
- "@yolo": triggers object detection using YOLO.
|
| 466 |
+
- **"@phi4": triggers multimodal (image/audio) processing using the Phi-4 model.**
|
|
|
|
| 467 |
"""
|
| 468 |
text = input_dict["text"]
|
| 469 |
files = input_dict.get("files", [])
|
|
|
|
| 479 |
num_steps=64,
|
| 480 |
randomize_seed=True,
|
| 481 |
)
|
| 482 |
+
# Copy the GLB file to a static folder.
|
| 483 |
static_folder = os.path.join(os.getcwd(), "static")
|
| 484 |
if not os.path.exists(static_folder):
|
| 485 |
os.makedirs(static_folder)
|
|
|
|
| 513 |
# --- Web Search/Visit branch ---
|
| 514 |
if text.strip().lower().startswith("@web"):
|
| 515 |
web_command = text[len("@web"):].strip()
|
| 516 |
+
# If the command starts with "visit", then treat the rest as a URL
|
| 517 |
if web_command.lower().startswith("visit"):
|
| 518 |
url = web_command[len("visit"):].strip()
|
| 519 |
yield "π Visiting webpage..."
|
|
|
|
| 521 |
content = visitor.forward(url)
|
| 522 |
yield content
|
| 523 |
else:
|
| 524 |
+
# Otherwise, treat the rest as a search query.
|
| 525 |
query = web_command
|
| 526 |
yield "π§€ Performing a web search ..."
|
| 527 |
searcher = DuckDuckGoSearchTool()
|
|
|
|
| 533 |
if text.strip().lower().startswith("@ragent"):
|
| 534 |
prompt = text[len("@ragent"):].strip()
|
| 535 |
yield "π Initiating reasoning chain using Llama mode..."
|
| 536 |
+
# Pass the current chat history (cleaned) to help inform the chain.
|
| 537 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
| 538 |
yield partial
|
| 539 |
return
|
| 540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
# --- YOLO Object Detection branch ---
|
| 542 |
if text.strip().lower().startswith("@yolo"):
|
| 543 |
yield "π Running object detection with YOLO..."
|
| 544 |
if not files or len(files) == 0:
|
| 545 |
yield "Error: Please attach an image for YOLO object detection."
|
| 546 |
return
|
| 547 |
+
# Use the first attached image
|
| 548 |
input_file = files[0]
|
| 549 |
try:
|
| 550 |
if isinstance(input_file, str):
|
|
|
|
| 568 |
if not question:
|
| 569 |
yield "Error: Please provide a question after @phi4."
|
| 570 |
return
|
| 571 |
+
# Determine input type (Image or Audio) from the first file
|
| 572 |
input_file = files[0]
|
| 573 |
try:
|
| 574 |
+
# If file is already a PIL Image, treat as image
|
| 575 |
if isinstance(input_file, Image.Image):
|
| 576 |
input_type = "Image"
|
| 577 |
file_for_phi4 = input_file
|
| 578 |
else:
|
| 579 |
+
# Try opening as image; if it fails, assume audio
|
| 580 |
try:
|
| 581 |
file_for_phi4 = Image.open(input_file)
|
| 582 |
input_type = "Image"
|
|
|
|
| 598 |
yield "Invalid file type for @phi4 multimodal processing."
|
| 599 |
return
|
| 600 |
|
| 601 |
+
# Initialize the streamer
|
| 602 |
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
| 603 |
|
| 604 |
+
# Prepare generation kwargs
|
| 605 |
generation_kwargs = {
|
| 606 |
**inputs,
|
| 607 |
"streamer": streamer,
|
|
|
|
| 609 |
"num_logits_to_keep": 0,
|
| 610 |
}
|
| 611 |
|
| 612 |
+
# Start generation in a separate thread
|
| 613 |
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
| 614 |
thread.start()
|
| 615 |
|
| 616 |
+
# Stream the response
|
| 617 |
buffer = ""
|
| 618 |
yield "π€ Processing with Phi-4..."
|
| 619 |
for new_text in streamer:
|
| 620 |
buffer += new_text
|
| 621 |
+
time.sleep(0.01) # Small delay to simulate real-time streaming
|
| 622 |
yield buffer
|
| 623 |
return
|
| 624 |
|
|
|
|
| 698 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 699 |
yield gr.Audio(output_file, autoplay=True)
|
| 700 |
|
|
|
|
| 701 |
# Gradio Chat Interface Setup and Launch
|
| 702 |
+
|
| 703 |
demo = gr.ChatInterface(
|
| 704 |
fn=generate,
|
| 705 |
additional_inputs=[
|
|
|
|
| 731 |
label="Query Input",
|
| 732 |
file_types=["image", "audio"],
|
| 733 |
file_count="multiple",
|
| 734 |
+
placeholder="β @tts1, @tts2, @image, @3d, @phi4 [image, audio], @rAgent, @web, @yolo, default [plain text]"
|
| 735 |
),
|
| 736 |
stop_btn="Stop Generation",
|
| 737 |
multimodal=True,
|
| 738 |
)
|
| 739 |
|
| 740 |
+
# Ensure the static folder exists
|
| 741 |
if not os.path.exists("static"):
|
| 742 |
os.makedirs("static")
|
| 743 |
|
| 744 |
from fastapi.staticfiles import StaticFiles
|
| 745 |
demo.app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 746 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 747 |
if __name__ == "__main__":
|
| 748 |
demo.queue(max_size=20).launch(share=True)
|