Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,318 Bytes
41f287b f5e1158 41f287b f5e1158 7929358 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b 9304abf f5e1158 41f287b f5e1158 41f287b 4334bf2 f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b 9304abf 41f287b f5e1158 41f287b 9304abf f5e1158 41f287b f5e1158 41f287b 9304abf 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 8288a58 f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b 4ea5f1d 4334bf2 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 695bc1c f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 41f287b f5e1158 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import random
import re
import ast
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from docling_core.types.doc import DoclingDocument, DocTagsDocument
# --- Constants ---
MAX_MAX_NEW_TOKENS = 5120
DEFAULT_MAX_NEW_TOKENS = 3072
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Model Loading ---
def load_model(model_id, model_class, subfolder=None):
"""Generic function to load a model and its processor."""
processor_kwargs = {"trust_remote_code": True}
model_kwargs = {"trust_remote_code": True, "torch_dtype": torch.float16}
if subfolder:
processor_kwargs["subfolder"] = subfolder
model_kwargs["subfolder"] = subfolder
processor = AutoProcessor.from_pretrained(model_id, **processor_kwargs)
model = model_class.from_pretrained(model_id, **model_kwargs).to(DEVICE).eval()
return processor, model
# Load Nanonets-OCR-s
processor_m, model_m = load_model(
"nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration
)
# Load MonkeyOCR
processor_g, model_g = load_model(
"echo840/MonkeyOCR", Qwen2_5_VLForConditionalGeneration, subfolder="Recognition"
)
# Load Typhoon-OCR-7B
processor_l, model_l = load_model(
"scb10x/typhoon-ocr-7b", Qwen2_5_VLForConditionalGeneration
)
# Load SmolDocling-256M-preview
processor_x, model_x = load_model(
"ds4sd/SmolDocling-256M-preview", AutoModelForVision2Seq
)
# Thyme-RL
processor_n, model_n = load_model(
"Kwai-Keye/Thyme-RL", Qwen2_5_VLForConditionalGeneration
)
MODEL_MAPPING = {
"Nanonets-OCR-s": (processor_m, model_m),
"MonkeyOCR-Recognition": (processor_g, model_g),
"Typhoon-OCR-7B": (processor_l, model_l),
"SmolDocling-256M-preview": (processor_x, model_x),
"Thyme-RL": (processor_n, model_n),
}
# --- Preprocessing Functions ---
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
"""Add random padding to an image based on its size."""
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0))
padded_image = ImageOps.expand(
image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel
)
return padded_image
def normalize_values(text, target_max=500):
"""Normalize numerical values in text to a target maximum for SmolDocling."""
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
try:
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
except (ValueError, SyntaxError):
return match.group(0)
pattern = r"\[([\d\.\s,]+)\]"
return re.sub(pattern, process_match, text)
def downsample_video(video_path, num_frames=10):
"""Downsample a video to evenly spaced frames, returning PIL images."""
if not video_path:
return []
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(image_rgb))
vidcap.release()
return frames
# --- Core Generation Logic ---
def _generate_response(model_name, text, images, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
"""Helper function to handle model inference."""
if not images:
yield "Please upload an image or video.", ""
return
try:
processor, model = MODEL_MAPPING[model_name]
except KeyError:
yield "Invalid model selected.", ""
return
# Model-specific preprocessing
if model_name == "SmolDocling-256M-preview":
if any(keyword in text for keyword in ["OTSL", "code"]):
images = [add_random_padding(img) for img in images]
if any(keyword in text for keyword in ["OCR at text at", "Identify element", "formula"]):
text = normalize_values(text, target_max=500)
messages = [
{
"role": "user",
"content": [{"type": "image"}] * len(images) + [{"type": "text", "text": text}],
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(DEVICE)
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, buffer
# Model-specific post-processing
if model_name == "SmolDocling-256M-preview":
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
is_doc_tag = any(
tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]
)
if is_doc_tag:
if "<chart>" in cleaned_output:
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
try:
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
markdown_output = doc.export_to_markdown()
yield buffer, markdown_output
except Exception as e:
yield buffer, f"Error processing Docling output: {e}"
else:
yield buffer, cleaned_output
@spaces.GPU
def generate_for_image(model_name, text, image, *args):
"""Generate responses for a single image input."""
if image is None:
yield "Please upload an image.", ""
return
yield from _generate_response(model_name, text, [image], *args)
@spaces.GPU
def generate_for_video(model_name, text, video_path, *args):
"""Generate responses for video input by downsampling frames."""
if video_path is None:
yield "Please upload a video.", ""
return
frames = downsample_video(video_path)
if not frames:
yield "Could not process video. Please check the file.", ""
return
yield from _generate_response(model_name, text, frames, *args)
# --- Gradio Interface ---
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
font-weight: bold !important;
border: none !important;
transition: background-color 0.3s ease;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.output-container {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
height: 100%;
}
"""
# Define examples
image_examples = [
["Reconstruct the doc [table] as it is.", "images/0.png"],
["Describe the image!", "images/8.png"],
["OCR the image", "images/2.jpg"],
["Convert this page to docling", "images/1.png"],
["Convert this page to docling", "images/3.png"],
["Convert chart to OTSL.", "images/4.png"],
["Convert code to text", "images/5.jpg"],
["Convert this table to OTSL.", "images/6.jpg"],
["Convert formula to latex.", "images/7.jpg"],
]
video_examples = [
["Explain the video in detail.", "videos/1.mp4"],
["Explain the video in detail.", "videos/2.mp4"],
]
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Multimodal OCR²](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
gr.Markdown("A unified interface for state-of-the-art multimodal and document AI models. Select a model, upload an image or video, and enter a query to begin.")
with gr.Row():
# --- LEFT COLUMN (INPUTS) ---
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=[
"Nanonets-OCR-s",
"MonkeyOCR-Recognition",
"Thyme-RL",
"Typhoon-OCR-7B",
"SmolDocling-256M-preview",
],
label="🤖 Select Model",
value="Nanonets-OCR-s",
)
with gr.Tabs():
with gr.TabItem("🖼️ Image Inference"):
image_query = gr.Textbox(label="Query", placeholder="e.g., 'OCR the document'")
image_upload = gr.Image(type="pil", label="Upload Image")
image_submit = gr.Button("Generate", elem_classes="submit-btn")
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
with gr.TabItem("🎬 Video Inference"):
video_query = gr.Textbox(label="Query", placeholder="e.g., 'What is happening in this video?'")
video_upload = gr.Video(label="Upload Video")
video_submit = gr.Button("Generate", elem_classes="submit-btn")
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
with gr.Accordion("⚙️ Advanced Options", open=False):
max_new_tokens = gr.Slider(
label="Max New Tokens", min=1, max=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS
)
temperature = gr.Slider(
label="Temperature", min=0.1, max=2.0, step=0.1, value=0.6
)
top_p = gr.Slider(
label="Top-P", min=0.05, max=1.0, step=0.05, value=0.9
)
top_k = gr.Slider(label="Top-K", min=1, max=1000, step=1, value=50)
repetition_penalty = gr.Slider(
label="Repetition Penalty", min=1.0, max=2.0, step=0.05, value=1.2
)
advanced_params = [max_new_tokens, temperature, top_p, top_k, repetition_penalty]
# --- RIGHT COLUMN (OUTPUTS & INFO) ---
with gr.Column(scale=2):
with gr.Column(elem_classes="output-container"):
gr.Markdown("## Output")
raw_output = gr.Textbox(
label="Raw Output Stream", interactive=False, lines=8
)
formatted_output = gr.Markdown(label="Formatted Result (Markdown)")
with gr.Accordion("💻 Model Information", open=True):
gr.Markdown(
"""
- **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: Transforms documents into structured markdown with intelligent content recognition.
- **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: An efficient multimodal model for converting documents to structured formats.
- **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: Adopts a Structure-Recognition-Relation paradigm for efficient document processing.
- **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual (Thai/English) document parsing model for real-world documents.
- **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Generates and executes code for image processing and complex reasoning tasks.
---
> ⚠️ **Note**: Performance on video inference tasks is experimental and may vary between models.
> [Report a Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)
"""
)
# --- Event Handlers ---
image_submit.click(
fn=generate_for_image,
inputs=[model_choice, image_query, image_upload] + advanced_params,
outputs=[raw_output, formatted_output],
)
video_submit.click(
fn=generate_for_video,
inputs=[model_choice, video_query, video_upload] + advanced_params,
outputs=[raw_output, formatted_output],
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, show_error=True) |