File size: 13,318 Bytes
41f287b
 
f5e1158
 
41f287b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e1158
7929358
 
41f287b
f5e1158
 
 
 
 
 
 
41f287b
f5e1158
 
 
 
 
 
 
41f287b
 
f5e1158
 
 
41f287b
 
f5e1158
 
41f287b
 
9304abf
f5e1158
 
 
41f287b
 
f5e1158
 
 
41f287b
4334bf2
f5e1158
 
 
 
 
 
 
 
 
 
 
 
 
41f287b
 
 
 
 
 
 
 
f5e1158
 
 
 
41f287b
 
 
f5e1158
41f287b
 
 
 
 
f5e1158
 
 
 
 
 
41f287b
 
f5e1158
41f287b
f5e1158
 
 
 
41f287b
 
 
f5e1158
 
41f287b
 
 
 
f5e1158
 
41f287b
 
 
f5e1158
 
 
 
 
41f287b
 
f5e1158
 
 
 
41f287b
 
f5e1158
41f287b
f5e1158
41f287b
f5e1158
41f287b
 
 
 
 
f5e1158
41f287b
 
f5e1158
41f287b
f5e1158
 
 
 
 
41f287b
 
 
 
 
 
 
 
 
 
f5e1158
41f287b
 
 
 
 
 
9304abf
41f287b
f5e1158
41f287b
9304abf
f5e1158
 
 
 
41f287b
 
 
f5e1158
 
 
 
 
 
 
 
41f287b
9304abf
41f287b
 
f5e1158
 
 
 
41f287b
f5e1158
41f287b
f5e1158
 
 
 
8288a58
f5e1158
41f287b
 
f5e1158
 
 
 
41f287b
 
f5e1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f287b
f5e1158
41f287b
4ea5f1d
4334bf2
41f287b
 
 
 
 
 
f5e1158
41f287b
 
 
 
f5e1158
41f287b
 
 
f5e1158
 
 
41f287b
f5e1158
 
41f287b
f5e1158
 
 
 
 
 
 
 
 
41f287b
f5e1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f287b
f5e1158
 
 
 
 
 
 
 
 
 
695bc1c
f5e1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f287b
f5e1158
 
 
41f287b
f5e1158
41f287b
f5e1158
 
 
41f287b
 
 
f5e1158
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import random
import re
import ast
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)

from docling_core.types.doc import DoclingDocument, DocTagsDocument

# --- Constants ---
MAX_MAX_NEW_TOKENS = 5120
DEFAULT_MAX_NEW_TOKENS = 3072
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# --- Model Loading ---
def load_model(model_id, model_class, subfolder=None):
    """Generic function to load a model and its processor."""
    processor_kwargs = {"trust_remote_code": True}
    model_kwargs = {"trust_remote_code": True, "torch_dtype": torch.float16}

    if subfolder:
        processor_kwargs["subfolder"] = subfolder
        model_kwargs["subfolder"] = subfolder

    processor = AutoProcessor.from_pretrained(model_id, **processor_kwargs)
    model = model_class.from_pretrained(model_id, **model_kwargs).to(DEVICE).eval()
    return processor, model

# Load Nanonets-OCR-s
processor_m, model_m = load_model(
    "nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration
)

# Load MonkeyOCR
processor_g, model_g = load_model(
    "echo840/MonkeyOCR", Qwen2_5_VLForConditionalGeneration, subfolder="Recognition"
)

# Load Typhoon-OCR-7B
processor_l, model_l = load_model(
    "scb10x/typhoon-ocr-7b", Qwen2_5_VLForConditionalGeneration
)

# Load SmolDocling-256M-preview
processor_x, model_x = load_model(
    "ds4sd/SmolDocling-256M-preview", AutoModelForVision2Seq
)

# Thyme-RL
processor_n, model_n = load_model(
    "Kwai-Keye/Thyme-RL", Qwen2_5_VLForConditionalGeneration
)

MODEL_MAPPING = {
    "Nanonets-OCR-s": (processor_m, model_m),
    "MonkeyOCR-Recognition": (processor_g, model_g),
    "Typhoon-OCR-7B": (processor_l, model_l),
    "SmolDocling-256M-preview": (processor_x, model_x),
    "Thyme-RL": (processor_n, model_n),
}

# --- Preprocessing Functions ---
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    """Add random padding to an image based on its size."""
    image = image.convert("RGB")
    width, height = image.size
    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)
    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)
    corner_pixel = image.getpixel((0, 0))
    padded_image = ImageOps.expand(
        image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel
    )
    return padded_image

def normalize_values(text, target_max=500):
    """Normalize numerical values in text to a target maximum for SmolDocling."""
    def normalize_list(values):
        max_value = max(values) if values else 1
        return [round((v / max_value) * target_max) for v in values]

    def process_match(match):
        try:
            num_list = ast.literal_eval(match.group(0))
            normalized = normalize_list(num_list)
            return "".join([f"<loc_{num}>" for num in normalized])
        except (ValueError, SyntaxError):
            return match.group(0)

    pattern = r"\[([\d\.\s,]+)\]"
    return re.sub(pattern, process_match, text)

def downsample_video(video_path, num_frames=10):
    """Downsample a video to evenly spaced frames, returning PIL images."""
    if not video_path:
        return []
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)

    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(image_rgb))
    vidcap.release()
    return frames

# --- Core Generation Logic ---
def _generate_response(model_name, text, images, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
    """Helper function to handle model inference."""
    if not images:
        yield "Please upload an image or video.", ""
        return

    try:
        processor, model = MODEL_MAPPING[model_name]
    except KeyError:
        yield "Invalid model selected.", ""
        return

    # Model-specific preprocessing
    if model_name == "SmolDocling-256M-preview":
        if any(keyword in text for keyword in ["OTSL", "code"]):
            images = [add_random_padding(img) for img in images]
        if any(keyword in text for keyword in ["OCR at text at", "Identify element", "formula"]):
            text = normalize_values(text, target_max=500)

    messages = [
        {
            "role": "user",
            "content": [{"type": "image"}] * len(images) + [{"type": "text", "text": text}],
        }
    ]

    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=images, return_tensors="pt").to(DEVICE)

    streamer = TextIteratorStreamer(
        processor, skip_prompt=True, skip_special_tokens=True
    )

    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text.replace("<|im_end|>", "")
        yield buffer, buffer

    # Model-specific post-processing
    if model_name == "SmolDocling-256M-preview":
        cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
        is_doc_tag = any(
            tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]
        )
        if is_doc_tag:
            if "<chart>" in cleaned_output:
                cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
            
            try:
                doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
                doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
                markdown_output = doc.export_to_markdown()
                yield buffer, markdown_output
            except Exception as e:
                yield buffer, f"Error processing Docling output: {e}"
        else:
            yield buffer, cleaned_output

@spaces.GPU
def generate_for_image(model_name, text, image, *args):
    """Generate responses for a single image input."""
    if image is None:
        yield "Please upload an image.", ""
        return
    yield from _generate_response(model_name, text, [image], *args)


@spaces.GPU
def generate_for_video(model_name, text, video_path, *args):
    """Generate responses for video input by downsampling frames."""
    if video_path is None:
        yield "Please upload a video.", ""
        return
    frames = downsample_video(video_path)
    if not frames:
        yield "Could not process video. Please check the file.", ""
        return
    yield from _generate_response(model_name, text, frames, *args)


# --- Gradio Interface ---
css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
    font-weight: bold !important;
    border: none !important;
    transition: background-color 0.3s ease;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
.output-container {
    border: 2px solid #4682B4;
    border-radius: 10px;
    padding: 20px;
    height: 100%;
}
"""

# Define examples
image_examples = [
    ["Reconstruct the doc [table] as it is.", "images/0.png"],
    ["Describe the image!", "images/8.png"],
    ["OCR the image", "images/2.jpg"],
    ["Convert this page to docling", "images/1.png"],
    ["Convert this page to docling", "images/3.png"],
    ["Convert chart to OTSL.", "images/4.png"],
    ["Convert code to text", "images/5.jpg"],
    ["Convert this table to OTSL.", "images/6.jpg"],
    ["Convert formula to latex.", "images/7.jpg"],
]

video_examples = [
    ["Explain the video in detail.", "videos/1.mp4"],
    ["Explain the video in detail.", "videos/2.mp4"],
]

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Multimodal OCR²](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    gr.Markdown("A unified interface for state-of-the-art multimodal and document AI models. Select a model, upload an image or video, and enter a query to begin.")

    with gr.Row():
        # --- LEFT COLUMN (INPUTS) ---
        with gr.Column(scale=1):
            model_choice = gr.Radio(
                choices=[
                    "Nanonets-OCR-s",
                    "MonkeyOCR-Recognition",
                    "Thyme-RL",
                    "Typhoon-OCR-7B",
                    "SmolDocling-256M-preview",
                ],
                label="🤖 Select Model",
                value="Nanonets-OCR-s",
            )

            with gr.Tabs():
                with gr.TabItem("🖼️ Image Inference"):
                    image_query = gr.Textbox(label="Query", placeholder="e.g., 'OCR the document'")
                    image_upload = gr.Image(type="pil", label="Upload Image")
                    image_submit = gr.Button("Generate", elem_classes="submit-btn")
                    gr.Examples(examples=image_examples, inputs=[image_query, image_upload])

                with gr.TabItem("🎬 Video Inference"):
                    video_query = gr.Textbox(label="Query", placeholder="e.g., 'What is happening in this video?'")
                    video_upload = gr.Video(label="Upload Video")
                    video_submit = gr.Button("Generate", elem_classes="submit-btn")
                    gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
            
            with gr.Accordion("⚙️ Advanced Options", open=False):
                max_new_tokens = gr.Slider(
                    label="Max New Tokens", min=1, max=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS
                )
                temperature = gr.Slider(
                    label="Temperature", min=0.1, max=2.0, step=0.1, value=0.6
                )
                top_p = gr.Slider(
                    label="Top-P", min=0.05, max=1.0, step=0.05, value=0.9
                )
                top_k = gr.Slider(label="Top-K", min=1, max=1000, step=1, value=50)
                repetition_penalty = gr.Slider(
                    label="Repetition Penalty", min=1.0, max=2.0, step=0.05, value=1.2
                )
            
            advanced_params = [max_new_tokens, temperature, top_p, top_k, repetition_penalty]

        # --- RIGHT COLUMN (OUTPUTS & INFO) ---
        with gr.Column(scale=2):
            with gr.Column(elem_classes="output-container"):
                gr.Markdown("## Output")
                raw_output = gr.Textbox(
                    label="Raw Output Stream", interactive=False, lines=8
                )
                formatted_output = gr.Markdown(label="Formatted Result (Markdown)")
            
            with gr.Accordion("💻 Model Information", open=True):
                gr.Markdown(
                    """
                    - **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: Transforms documents into structured markdown with intelligent content recognition.
                    - **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: An efficient multimodal model for converting documents to structured formats.
                    - **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: Adopts a Structure-Recognition-Relation paradigm for efficient document processing.
                    - **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual (Thai/English) document parsing model for real-world documents.
                    - **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Generates and executes code for image processing and complex reasoning tasks.
                    ---
                    > ⚠️ **Note**: Performance on video inference tasks is experimental and may vary between models.
                    
                    > [Report a Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)
                    """
                )

    # --- Event Handlers ---
    image_submit.click(
        fn=generate_for_image,
        inputs=[model_choice, image_query, image_upload] + advanced_params,
        outputs=[raw_output, formatted_output],
    )

    video_submit.click(
        fn=generate_for_video,
        inputs=[model_choice, video_query, video_upload] + advanced_params,
        outputs=[raw_output, formatted_output],
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(share=True, show_error=True)