Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -131,6 +131,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 131 |
top_k: int = 50,
|
| 132 |
repetition_penalty: float = 1.2):
|
| 133 |
"""Generate responses for image input using the selected model."""
|
|
|
|
| 134 |
if model_name == "Nanonets-OCR-s":
|
| 135 |
processor = processor_m
|
| 136 |
model = model_m
|
|
@@ -151,14 +152,17 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 151 |
yield "Please upload an image.", "Please upload an image."
|
| 152 |
return
|
| 153 |
|
|
|
|
| 154 |
images = [image]
|
| 155 |
|
|
|
|
| 156 |
if model_name == "SmolDocling-256M-preview":
|
| 157 |
if "OTSL" in text or "code" in text:
|
| 158 |
images = [add_random_padding(img) for img in images]
|
| 159 |
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 160 |
text = normalize_values(text, target_max=500)
|
| 161 |
|
|
|
|
| 162 |
messages = [
|
| 163 |
{
|
| 164 |
"role": "user",
|
|
@@ -170,6 +174,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 170 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 171 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
| 172 |
|
|
|
|
| 173 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 174 |
generation_kwargs = {
|
| 175 |
**inputs,
|
|
@@ -183,11 +188,13 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 183 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 184 |
thread.start()
|
| 185 |
|
|
|
|
| 186 |
buffer = ""
|
| 187 |
for new_text in streamer:
|
| 188 |
buffer += new_text.replace("<|im_end|>", "")
|
| 189 |
yield buffer, buffer
|
| 190 |
|
|
|
|
| 191 |
if model_name == "SmolDocling-256M-preview":
|
| 192 |
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 193 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
|
@@ -209,6 +216,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 209 |
top_k: int = 50,
|
| 210 |
repetition_penalty: float = 1.2):
|
| 211 |
"""Generate responses for video input using the selected model."""
|
|
|
|
| 212 |
if model_name == "Nanonets-OCR-s":
|
| 213 |
processor = processor_m
|
| 214 |
model = model_m
|
|
@@ -229,15 +237,18 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 229 |
yield "Please upload a video.", "Please upload a video."
|
| 230 |
return
|
| 231 |
|
|
|
|
| 232 |
frames = downsample_video(video_path)
|
| 233 |
images = [frame for frame, _ in frames]
|
| 234 |
|
|
|
|
| 235 |
if model_name == "SmolDocling-256M-preview":
|
| 236 |
if "OTSL" in text or "code" in text:
|
| 237 |
images = [add_random_padding(img) for img in images]
|
| 238 |
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 239 |
text = normalize_values(text, target_max=500)
|
| 240 |
|
|
|
|
| 241 |
messages = [
|
| 242 |
{
|
| 243 |
"role": "user",
|
|
@@ -249,6 +260,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 249 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 250 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
| 251 |
|
|
|
|
| 252 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 253 |
generation_kwargs = {
|
| 254 |
**inputs,
|
|
@@ -262,11 +274,13 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 262 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 263 |
thread.start()
|
| 264 |
|
|
|
|
| 265 |
buffer = ""
|
| 266 |
for new_text in streamer:
|
| 267 |
buffer += new_text.replace("<|im_end|>", "")
|
| 268 |
yield buffer, buffer
|
| 269 |
|
|
|
|
| 270 |
if model_name == "SmolDocling-256M-preview":
|
| 271 |
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 272 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
|
@@ -297,92 +311,63 @@ video_examples = [
|
|
| 297 |
["Explain the video in detail.", "videos/2.mp4"]
|
| 298 |
]
|
| 299 |
|
| 300 |
-
# Updated CSS with
|
| 301 |
css = """
|
| 302 |
-
.
|
| 303 |
-
--stone-50: #fafaf9;
|
| 304 |
-
--stone-800: #292524;
|
| 305 |
-
--yellow-400: #facc15;
|
| 306 |
-
|
| 307 |
-
font-size: 1rem;
|
| 308 |
cursor: pointer;
|
| 309 |
-
|
| 310 |
-
font-family: "Rubik", sans-serif;
|
| 311 |
font-weight: bold;
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
transform 150ms ease,
|
| 322 |
-
box-shadow 150ms ease;
|
| 323 |
-
text-align: center;
|
| 324 |
-
box-shadow:
|
| 325 |
-
0.5px 0.5px 0 0 var(--stone-800),
|
| 326 |
-
1px 1px 0 0 var(--stone-800),
|
| 327 |
-
1.5px 1.5px 0 0 var(--stone-800),
|
| 328 |
-
2px 2px 0 0 var(--stone-800),
|
| 329 |
-
2.5px 2.5px 0 0 var(--stone-800),
|
| 330 |
-
3px 3px 0 0 var(--stone-800),
|
| 331 |
-
0 0 0 2px var(--stone-50),
|
| 332 |
-
0.5px 0.5px 0 2px var(--stone-50),
|
| 333 |
-
1px 1px 0 2px var(--stone-50),
|
| 334 |
-
1.5px 1.5px 0 2px var(--stone-50),
|
| 335 |
-
2px 2px 0 2px var(--stone-50),
|
| 336 |
-
2.5px 2.5px 0 2px var(--stone-50),
|
| 337 |
-
3px 3px 0 2px var(--stone-50),
|
| 338 |
-
3.5px 3.5px 0 2px var(--stone-50),
|
| 339 |
-
4px 4px 0 2px var(--stone-50);
|
| 340 |
-
}
|
| 341 |
-
|
| 342 |
-
.submit-btn:hover {
|
| 343 |
-
transform: translate(0, 0);
|
| 344 |
-
box-shadow: 0 0 0 2px var(--stone-50);
|
| 345 |
}
|
| 346 |
|
| 347 |
-
.
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
| 349 |
}
|
| 350 |
|
| 351 |
-
.
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
| 354 |
}
|
| 355 |
|
| 356 |
-
.
|
| 357 |
content: "";
|
| 358 |
position: absolute;
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
}
|
| 374 |
|
| 375 |
-
|
| 376 |
-
0
|
| 377 |
-
background-position:
|
| 378 |
-
0 0,
|
| 379 |
-
4px 4px;
|
| 380 |
-
}
|
| 381 |
-
100% {
|
| 382 |
-
background-position:
|
| 383 |
-
8px 0,
|
| 384 |
-
12px 4px;
|
| 385 |
-
}
|
| 386 |
}
|
| 387 |
|
| 388 |
.canvas-output {
|
|
@@ -401,7 +386,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 401 |
with gr.TabItem("Image Inference"):
|
| 402 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 403 |
image_upload = gr.Image(type="pil", label="Image")
|
| 404 |
-
image_submit = gr.Button("Submit", elem_classes="
|
| 405 |
gr.Examples(
|
| 406 |
examples=image_examples,
|
| 407 |
inputs=[image_query, image_upload]
|
|
@@ -409,7 +394,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 409 |
with gr.TabItem("Video Inference"):
|
| 410 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 411 |
video_upload = gr.Video(label="Video")
|
| 412 |
-
video_submit = gr.Button("Submit", elem_classes="
|
| 413 |
gr.Examples(
|
| 414 |
examples=video_examples,
|
| 415 |
inputs=[video_query, video_upload]
|
|
@@ -422,9 +407,11 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 422 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 423 |
|
| 424 |
with gr.Column():
|
|
|
|
| 425 |
with gr.Column(elem_classes="canvas-output"):
|
| 426 |
gr.Markdown("## Output")
|
| 427 |
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
|
|
|
|
| 428 |
with gr.Accordion("(Result.md)", open=False):
|
| 429 |
formatted_output = gr.Markdown(label="(Result.md)")
|
| 430 |
|
|
@@ -441,6 +428,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 441 |
gr.Markdown("> [Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b): A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.")
|
| 442 |
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 443 |
|
|
|
|
| 444 |
image_submit.click(
|
| 445 |
fn=generate_image,
|
| 446 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
|
|
|
| 131 |
top_k: int = 50,
|
| 132 |
repetition_penalty: float = 1.2):
|
| 133 |
"""Generate responses for image input using the selected model."""
|
| 134 |
+
# Model selection
|
| 135 |
if model_name == "Nanonets-OCR-s":
|
| 136 |
processor = processor_m
|
| 137 |
model = model_m
|
|
|
|
| 152 |
yield "Please upload an image.", "Please upload an image."
|
| 153 |
return
|
| 154 |
|
| 155 |
+
# Prepare images as a list (single image for image inference)
|
| 156 |
images = [image]
|
| 157 |
|
| 158 |
+
# SmolDocling-256M specific preprocessing
|
| 159 |
if model_name == "SmolDocling-256M-preview":
|
| 160 |
if "OTSL" in text or "code" in text:
|
| 161 |
images = [add_random_padding(img) for img in images]
|
| 162 |
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 163 |
text = normalize_values(text, target_max=500)
|
| 164 |
|
| 165 |
+
# Unified message structure for all models
|
| 166 |
messages = [
|
| 167 |
{
|
| 168 |
"role": "user",
|
|
|
|
| 174 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 175 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
| 176 |
|
| 177 |
+
# Generation with streaming
|
| 178 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 179 |
generation_kwargs = {
|
| 180 |
**inputs,
|
|
|
|
| 188 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 189 |
thread.start()
|
| 190 |
|
| 191 |
+
# Stream output
|
| 192 |
buffer = ""
|
| 193 |
for new_text in streamer:
|
| 194 |
buffer += new_text.replace("<|im_end|>", "")
|
| 195 |
yield buffer, buffer
|
| 196 |
|
| 197 |
+
# SmolDocling-256M specific postprocessing
|
| 198 |
if model_name == "SmolDocling-256M-preview":
|
| 199 |
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 200 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
|
|
|
| 216 |
top_k: int = 50,
|
| 217 |
repetition_penalty: float = 1.2):
|
| 218 |
"""Generate responses for video input using the selected model."""
|
| 219 |
+
# Model selection
|
| 220 |
if model_name == "Nanonets-OCR-s":
|
| 221 |
processor = processor_m
|
| 222 |
model = model_m
|
|
|
|
| 237 |
yield "Please upload a video.", "Please upload a video."
|
| 238 |
return
|
| 239 |
|
| 240 |
+
# Extract frames from video
|
| 241 |
frames = downsample_video(video_path)
|
| 242 |
images = [frame for frame, _ in frames]
|
| 243 |
|
| 244 |
+
# SmolDocling-256M specific preprocessing
|
| 245 |
if model_name == "SmolDocling-256M-preview":
|
| 246 |
if "OTSL" in text or "code" in text:
|
| 247 |
images = [add_random_padding(img) for img in images]
|
| 248 |
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 249 |
text = normalize_values(text, target_max=500)
|
| 250 |
|
| 251 |
+
# Unified message structure for all models
|
| 252 |
messages = [
|
| 253 |
{
|
| 254 |
"role": "user",
|
|
|
|
| 260 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 261 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
| 262 |
|
| 263 |
+
# Generation with streaming
|
| 264 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 265 |
generation_kwargs = {
|
| 266 |
**inputs,
|
|
|
|
| 274 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 275 |
thread.start()
|
| 276 |
|
| 277 |
+
# Stream output
|
| 278 |
buffer = ""
|
| 279 |
for new_text in streamer:
|
| 280 |
buffer += new_text.replace("<|im_end|>", "")
|
| 281 |
yield buffer, buffer
|
| 282 |
|
| 283 |
+
# SmolDocling-256M specific postprocessing
|
| 284 |
if model_name == "SmolDocling-256M-preview":
|
| 285 |
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 286 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
|
|
|
| 311 |
["Explain the video in detail.", "videos/2.mp4"]
|
| 312 |
]
|
| 313 |
|
| 314 |
+
# Updated CSS with new button theme
|
| 315 |
css = """
|
| 316 |
+
.button {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
cursor: pointer;
|
| 318 |
+
padding: 1em 2em;
|
|
|
|
| 319 |
font-weight: bold;
|
| 320 |
+
font-size: 20px;
|
| 321 |
+
color: #fff;
|
| 322 |
+
position: relative;
|
| 323 |
+
overflow: hidden;
|
| 324 |
+
background: rgba(60, 73, 203, 0.35);
|
| 325 |
+
box-shadow: 0 0px 32px 0 rgba(31, 38, 135, 0.37);
|
| 326 |
+
backdrop-filter: blur(14.5px);
|
| 327 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
| 328 |
+
-webkit-backdrop-filter: blur(14.5px);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
}
|
| 330 |
|
| 331 |
+
.button:hover {
|
| 332 |
+
box-shadow: 0px 0 32px 0 rgba(31, 38, 135, 0.37),
|
| 333 |
+
0px 0 32px 0 rgba(31, 38, 135, 0.37), 0 0 42px 0px rgba(31, 38, 135, 0.37),
|
| 334 |
+
0 0 52px 0 rgba(31, 38, 135, 0.37);
|
| 335 |
+
border: 1px solid rgba(255, 255, 255, 0.58);
|
| 336 |
}
|
| 337 |
|
| 338 |
+
.button,
|
| 339 |
+
.button::before {
|
| 340 |
+
display: grid;
|
| 341 |
+
place-items: center;
|
| 342 |
+
border-radius: 10px;
|
| 343 |
+
box-shadow: 0 0px 32px 0 rgba(31, 38, 135, 0.37);
|
| 344 |
}
|
| 345 |
|
| 346 |
+
.button::before {
|
| 347 |
content: "";
|
| 348 |
position: absolute;
|
| 349 |
+
background: rgba(26, 18, 241, 0.25);
|
| 350 |
+
width: 90%;
|
| 351 |
+
height: 80%;
|
| 352 |
+
backdrop-filter: blur(18.5px);
|
| 353 |
+
-webkit-backdrop-filter: blur(18.5px);
|
| 354 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
| 355 |
+
transition: 0.4s;
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
.button:hover::before {
|
| 359 |
+
background: rgba(51, 57, 236, 0.4);
|
| 360 |
+
box-shadow: 1px 1px 2px 0 rgba(31, 38, 135, 0.37),
|
| 361 |
+
2px 2px 2px 0 rgba(31, 38, 135, 0.37), 0 0px 32px 0 rgba(31, 38, 135, 0.37),
|
| 362 |
+
0 0px 32px 1px rgba(31, 38, 135, 0.37), 0 0px 32px 0 rgba(31, 38, 135, 0.37);
|
| 363 |
+
backdrop-filter: blur(5.5px);
|
| 364 |
+
-webkit-backdrop-filter: blur(5.5px);
|
| 365 |
+
border-radius: 10px;
|
| 366 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
| 367 |
}
|
| 368 |
|
| 369 |
+
.button:active::before {
|
| 370 |
+
transform: scale(0.67);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
}
|
| 372 |
|
| 373 |
.canvas-output {
|
|
|
|
| 386 |
with gr.TabItem("Image Inference"):
|
| 387 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 388 |
image_upload = gr.Image(type="pil", label="Image")
|
| 389 |
+
image_submit = gr.Button("Submit", elem_classes="button")
|
| 390 |
gr.Examples(
|
| 391 |
examples=image_examples,
|
| 392 |
inputs=[image_query, image_upload]
|
|
|
|
| 394 |
with gr.TabItem("Video Inference"):
|
| 395 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 396 |
video_upload = gr.Video(label="Video")
|
| 397 |
+
video_submit = gr.Button("Submit", elem_classes="button")
|
| 398 |
gr.Examples(
|
| 399 |
examples=video_examples,
|
| 400 |
inputs=[video_query, video_upload]
|
|
|
|
| 407 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 408 |
|
| 409 |
with gr.Column():
|
| 410 |
+
# Result Canvas with raw and formatted outputs
|
| 411 |
with gr.Column(elem_classes="canvas-output"):
|
| 412 |
gr.Markdown("## Output")
|
| 413 |
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
|
| 414 |
+
|
| 415 |
with gr.Accordion("(Result.md)", open=False):
|
| 416 |
formatted_output = gr.Markdown(label="(Result.md)")
|
| 417 |
|
|
|
|
| 428 |
gr.Markdown("> [Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b): A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.")
|
| 429 |
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 430 |
|
| 431 |
+
# Connect submit buttons to generation functions with both outputs
|
| 432 |
image_submit.click(
|
| 433 |
fn=generate_image,
|
| 434 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|