Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,15 +23,11 @@ from transformers import (
|
|
| 23 |
)
|
| 24 |
from transformers.image_utils import load_image
|
| 25 |
|
| 26 |
-
# These imports seem to be from a custom library.
|
| 27 |
-
# If you have 'docling_core' installed, you can uncomment them.
|
| 28 |
-
# from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
| 29 |
-
|
| 30 |
import re
|
| 31 |
import ast
|
| 32 |
import html
|
| 33 |
|
| 34 |
-
#
|
| 35 |
MAX_MAX_NEW_TOKENS = 5120
|
| 36 |
DEFAULT_MAX_NEW_TOKENS = 3072
|
| 37 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
@@ -90,7 +86,6 @@ model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 90 |
torch_dtype=torch.float16
|
| 91 |
).to(device).eval()
|
| 92 |
|
| 93 |
-
|
| 94 |
# --- Preprocessing and Helper Functions ---
|
| 95 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
| 96 |
"""Add random padding to an image based on its size."""
|
|
@@ -150,9 +145,9 @@ def format_smoldocling_output(buffer_text, images):
|
|
| 150 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 151 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 152 |
markdown_output = doc.export_to_markdown()
|
| 153 |
-
return markdown_output
|
| 154 |
# Fallback if library is not available or tags are not present
|
| 155 |
-
return cleaned_output
|
| 156 |
|
| 157 |
# --- Core Generation Logic ---
|
| 158 |
def get_model_and_processor(model_name):
|
|
@@ -170,52 +165,33 @@ def get_model_and_processor(model_name):
|
|
| 170 |
else:
|
| 171 |
return None, None
|
| 172 |
|
| 173 |
-
def is_video_file(filepath):
|
| 174 |
-
"""Check if a file has a common video extension."""
|
| 175 |
-
if not filepath:
|
| 176 |
-
return False
|
| 177 |
-
video_extensions = ['.mp4', '.mov', '.avi', '.mkv', '.webm']
|
| 178 |
-
return any(filepath.lower().endswith(ext) for ext in video_extensions)
|
| 179 |
-
|
| 180 |
@spaces.GPU
|
| 181 |
-
def generate_response(
|
| 182 |
-
|
| 183 |
-
query: str,
|
| 184 |
-
model_name: str,
|
| 185 |
-
max_new_tokens: int,
|
| 186 |
-
temperature: float,
|
| 187 |
-
top_p: float
|
| 188 |
-
):
|
| 189 |
"""Unified generation function for both image and video."""
|
| 190 |
-
if media_file is None:
|
| 191 |
-
yield "Please upload an image or video file first."
|
| 192 |
-
return
|
| 193 |
-
|
| 194 |
processor, model = get_model_and_processor(model_name)
|
| 195 |
if not processor or not model:
|
| 196 |
-
yield "Invalid model selected."
|
| 197 |
return
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
try:
|
| 202 |
-
if media_type == "video":
|
| 203 |
-
frames = downsample_video(media_file)
|
| 204 |
-
images = [frame for frame, _ in frames]
|
| 205 |
-
else: # image
|
| 206 |
-
images = [Image.open(media_file)]
|
| 207 |
-
except Exception as e:
|
| 208 |
-
yield f"Error processing file: {e}"
|
| 209 |
return
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
if model_name == "SmolDocling-256M-preview":
|
| 212 |
-
if "OTSL" in
|
| 213 |
images = [add_random_padding(img) for img in images]
|
| 214 |
-
if "OCR at text at" in
|
| 215 |
-
|
| 216 |
|
| 217 |
messages = [
|
| 218 |
-
{"role": "user", "content": [{"type": "image"} for _ in images] + [{"type": "text", "text":
|
| 219 |
]
|
| 220 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 221 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
|
@@ -227,153 +203,346 @@ def generate_response(
|
|
| 227 |
"max_new_tokens": max_new_tokens,
|
| 228 |
"temperature": temperature,
|
| 229 |
"top_p": top_p,
|
|
|
|
|
|
|
| 230 |
}
|
| 231 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 232 |
thread.start()
|
| 233 |
|
| 234 |
buffer = ""
|
| 235 |
for new_text in streamer:
|
| 236 |
-
buffer += new_text.replace("
|
| 237 |
-
yield buffer
|
| 238 |
|
| 239 |
if model_name == "SmolDocling-256M-preview":
|
| 240 |
-
formatted_output = format_smoldocling_output(buffer, images)
|
| 241 |
-
yield formatted_output
|
| 242 |
else:
|
| 243 |
-
|
|
|
|
| 244 |
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
# --- Examples ---
|
| 248 |
image_examples = [
|
| 249 |
-
["
|
| 250 |
-
["
|
| 251 |
-
["images/2.jpg"
|
| 252 |
-
["
|
| 253 |
-
["
|
| 254 |
-
["
|
| 255 |
-
["
|
| 256 |
-
["
|
| 257 |
-
["
|
| 258 |
]
|
|
|
|
| 259 |
video_examples = [
|
| 260 |
-
["
|
| 261 |
-
["
|
| 262 |
]
|
| 263 |
-
all_examples = image_examples + video_examples
|
| 264 |
-
|
| 265 |
|
| 266 |
-
# ---
|
| 267 |
css = """
|
| 268 |
-
|
| 269 |
-
.
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
"""
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
if is_video_file(file.name):
|
| 282 |
-
return file.name, gr.update(visible=False), gr.update(value=file.name, visible=True)
|
| 283 |
-
else:
|
| 284 |
-
return file.name, gr.update(value=file.name, visible=True), gr.update(visible=False)
|
| 285 |
-
|
| 286 |
-
def handle_example_click(file_path, query):
|
| 287 |
-
if is_video_file(file_path):
|
| 288 |
-
# Update state, hide image, show video, update query
|
| 289 |
-
return file_path, gr.update(visible=False), gr.update(value=file_path, visible=True), query
|
| 290 |
-
else:
|
| 291 |
-
# Update state, show image, hide video, update query
|
| 292 |
-
return file_path, gr.update(value=file_path, visible=True), gr.update(visible=False), query
|
| 293 |
-
|
| 294 |
-
def clear_all():
|
| 295 |
-
return None, gr.update(visible=False), gr.update(visible=False), "### Output will be shown here", ""
|
| 296 |
-
|
| 297 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 298 |
-
media_file_path = gr.State(None)
|
| 299 |
|
| 300 |
-
with gr.Row(
|
| 301 |
-
#
|
| 302 |
-
with gr.Column(scale=1, elem_classes="sidebar"):
|
| 303 |
-
gr.Markdown("
|
| 304 |
-
add_conv_btn = gr.Button("+ Add
|
| 305 |
-
gr.Markdown("---")
|
| 306 |
-
gr.Markdown("#### Advanced Options")
|
| 307 |
-
with gr.Accordion("⚙️ Generation Settings", open=False):
|
| 308 |
-
max_new_tokens = gr.Slider(
|
| 309 |
-
label="Max New Tokens",
|
| 310 |
-
minimum=256,
|
| 311 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
| 312 |
-
step=64,
|
| 313 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
| 314 |
-
)
|
| 315 |
-
temperature = gr.Slider(
|
| 316 |
-
label="Temperature", minimum=0.1, maximum=1.0, step=0.05, value=0.6
|
| 317 |
-
)
|
| 318 |
-
top_p = gr.Slider(
|
| 319 |
-
label="Top-p", minimum=0.1, maximum=1.0, step=0.05, value=0.9
|
| 320 |
-
)
|
| 321 |
-
|
| 322 |
-
# --- Main Content Panel ---
|
| 323 |
-
with gr.Column(scale=4):
|
| 324 |
-
gr.Markdown("# Multimodal OCR")
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
query_input = gr.Textbox(
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
)
|
| 346 |
-
submit_btn = gr.Button("▶", elem_classes="submit-button")
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
# --- Event Handlers ---
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
fn=handle_file_upload,
|
| 362 |
-
inputs=[
|
| 363 |
-
outputs=[
|
| 364 |
)
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
)
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
)
|
| 376 |
|
| 377 |
-
|
| 378 |
if __name__ == "__main__":
|
| 379 |
demo.queue(max_size=50).launch(share=True, show_error=True)
|
|
|
|
| 23 |
)
|
| 24 |
from transformers.image_utils import load_image
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
import re
|
| 27 |
import ast
|
| 28 |
import html
|
| 29 |
|
| 30 |
+
# Constants for text generation
|
| 31 |
MAX_MAX_NEW_TOKENS = 5120
|
| 32 |
DEFAULT_MAX_NEW_TOKENS = 3072
|
| 33 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
|
| 86 |
torch_dtype=torch.float16
|
| 87 |
).to(device).eval()
|
| 88 |
|
|
|
|
| 89 |
# --- Preprocessing and Helper Functions ---
|
| 90 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
| 91 |
"""Add random padding to an image based on its size."""
|
|
|
|
| 145 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 146 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 147 |
markdown_output = doc.export_to_markdown()
|
| 148 |
+
return buffer_text, markdown_output
|
| 149 |
# Fallback if library is not available or tags are not present
|
| 150 |
+
return buffer_text, cleaned_output
|
| 151 |
|
| 152 |
# --- Core Generation Logic ---
|
| 153 |
def get_model_and_processor(model_name):
|
|
|
|
| 165 |
else:
|
| 166 |
return None, None
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
@spaces.GPU
|
| 169 |
+
def generate_response(model_name: str, text: str, media_input, media_type: str,
|
| 170 |
+
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
"""Unified generation function for both image and video."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
processor, model = get_model_and_processor(model_name)
|
| 173 |
if not processor or not model:
|
| 174 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 175 |
return
|
| 176 |
|
| 177 |
+
if media_input is None:
|
| 178 |
+
yield f"Please upload a {media_type}.", f"Please upload a {media_type}."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
return
|
| 180 |
|
| 181 |
+
if media_type == "video":
|
| 182 |
+
frames = downsample_video(media_input)
|
| 183 |
+
images = [frame for frame, _ in frames]
|
| 184 |
+
else: # image
|
| 185 |
+
images = [media_input]
|
| 186 |
+
|
| 187 |
if model_name == "SmolDocling-256M-preview":
|
| 188 |
+
if "OTSL" in text or "code" in text:
|
| 189 |
images = [add_random_padding(img) for img in images]
|
| 190 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 191 |
+
text = normalize_values(text, target_max=500)
|
| 192 |
|
| 193 |
messages = [
|
| 194 |
+
{"role": "user", "content": [{"type": "image"} for _ in images] + [{"type": "text", "text": text}]}
|
| 195 |
]
|
| 196 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 197 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
|
|
|
| 203 |
"max_new_tokens": max_new_tokens,
|
| 204 |
"temperature": temperature,
|
| 205 |
"top_p": top_p,
|
| 206 |
+
"top_k": top_k,
|
| 207 |
+
"repetition_penalty": repetition_penalty,
|
| 208 |
}
|
| 209 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 210 |
thread.start()
|
| 211 |
|
| 212 |
buffer = ""
|
| 213 |
for new_text in streamer:
|
| 214 |
+
buffer += new_text.replace("", "")
|
| 215 |
+
yield buffer, buffer
|
| 216 |
|
| 217 |
if model_name == "SmolDocling-256M-preview":
|
| 218 |
+
raw_output, formatted_output = format_smoldocling_output(buffer, images)
|
| 219 |
+
yield raw_output, formatted_output
|
| 220 |
else:
|
| 221 |
+
# For other models, the formatted output is just the cleaned buffer
|
| 222 |
+
yield buffer, buffer.strip()
|
| 223 |
|
| 224 |
+
def generate_image_wrapper(*args):
|
| 225 |
+
yield from generate_response(*args, media_type="image")
|
| 226 |
+
|
| 227 |
+
def generate_video_wrapper(*args):
|
| 228 |
+
yield from generate_response(*args, media_type="video")
|
| 229 |
|
| 230 |
# --- Examples ---
|
| 231 |
image_examples = [
|
| 232 |
+
["Reconstruct the doc [table] as it is.", "images/0.png"],
|
| 233 |
+
["Describe the image!", "images/8.png"],
|
| 234 |
+
["OCR the image", "images/2.jpg"],
|
| 235 |
+
["Convert this page to docling", "images/1.png"],
|
| 236 |
+
["Convert this page to docling", "images/3.png"],
|
| 237 |
+
["Convert chart to OTSL.", "images/4.png"],
|
| 238 |
+
["Convert code to text", "images/5.jpg"],
|
| 239 |
+
["Convert this table to OTSL.", "images/6.jpg"],
|
| 240 |
+
["Convert formula to latex.", "images/7.jpg"],
|
| 241 |
]
|
| 242 |
+
|
| 243 |
video_examples = [
|
| 244 |
+
["Explain the video in detail.", "videos/1.mp4"],
|
| 245 |
+
["Explain the video in detail.", "videos/2.mp4"]
|
| 246 |
]
|
|
|
|
|
|
|
| 247 |
|
| 248 |
+
# --- Custom CSS for the new UI ---
|
| 249 |
css = """
|
| 250 |
+
/* Left sidebar styles */
|
| 251 |
+
.sidebar {
|
| 252 |
+
background-color: #f8f9fa;
|
| 253 |
+
border-right: 1px solid #e9ecef;
|
| 254 |
+
padding: 20px;
|
| 255 |
+
height: 100vh;
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
/* Main content area */
|
| 259 |
+
.content-area {
|
| 260 |
+
padding: 20px;
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
/* Document grid */
|
| 264 |
+
.doc-grid {
|
| 265 |
+
display: grid;
|
| 266 |
+
grid-template-columns: repeat(5, 1fr);
|
| 267 |
+
gap: 10px;
|
| 268 |
+
margin: 20px 0;
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
.doc-item {
|
| 272 |
+
border: 1px solid #dee2e6;
|
| 273 |
+
border-radius: 8px;
|
| 274 |
+
padding: 10px;
|
| 275 |
+
text-align: center;
|
| 276 |
+
height: 120px;
|
| 277 |
+
background-color: #f8f9fa;
|
| 278 |
+
cursor: pointer;
|
| 279 |
+
transition: all 0.2s ease;
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
.doc-item:hover {
|
| 283 |
+
border-color: #007bff;
|
| 284 |
+
background-color: #e9f0ff;
|
| 285 |
+
}
|
| 286 |
+
|
| 287 |
+
/* Upload and controls area */
|
| 288 |
+
.upload-controls {
|
| 289 |
+
display: flex;
|
| 290 |
+
align-items: center;
|
| 291 |
+
gap: 10px;
|
| 292 |
+
margin: 20px 0;
|
| 293 |
+
padding: 15px;
|
| 294 |
+
border: 1px solid #e9ecef;
|
| 295 |
+
border-radius: 8px;
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
.file-upload {
|
| 299 |
+
flex: 1;
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
.model-dropdown {
|
| 303 |
+
width: 200px;
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
.submit-btn {
|
| 307 |
+
background-color: #007bff;
|
| 308 |
+
color: white;
|
| 309 |
+
border: none;
|
| 310 |
+
border-radius: 4px;
|
| 311 |
+
padding: 10px 20px;
|
| 312 |
+
font-size: 1.2rem;
|
| 313 |
+
cursor: pointer;
|
| 314 |
+
transition: background-color 0.2s;
|
| 315 |
+
}
|
| 316 |
+
|
| 317 |
+
.submit-btn:hover {
|
| 318 |
+
background-color: #0069d9;
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
/* Output area */
|
| 322 |
+
.output-area {
|
| 323 |
+
margin-top: 20px;
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
/* Add conversation button */
|
| 327 |
+
.add-conv-btn {
|
| 328 |
+
background-color: #28a745;
|
| 329 |
+
color: white;
|
| 330 |
+
border: none;
|
| 331 |
+
padding: 8px 15px;
|
| 332 |
+
border-radius: 4px;
|
| 333 |
+
cursor: pointer;
|
| 334 |
+
}
|
| 335 |
+
|
| 336 |
+
.add-conv-btn:hover {
|
| 337 |
+
background-color: #218838;
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
/* Examples section */
|
| 341 |
+
.examples-section {
|
| 342 |
+
margin-top: 20px;
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
/* Header styles */
|
| 346 |
+
.header {
|
| 347 |
+
margin-bottom: 15px;
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
/* Media upload icon styling */
|
| 351 |
+
.upload-icon {
|
| 352 |
+
font-size: 1.5rem;
|
| 353 |
+
color: #6c757d;
|
| 354 |
+
margin-right: 10px;
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
/* Document icon styling */
|
| 358 |
+
.doc-icon {
|
| 359 |
+
font-size: 2rem;
|
| 360 |
+
color: #6c757d;
|
| 361 |
+
margin-bottom: 5px;
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
/* Query input */
|
| 365 |
+
.query-input {
|
| 366 |
+
margin: 15px 0;
|
| 367 |
+
}
|
| 368 |
+
|
| 369 |
+
/* Model dropdown styling */
|
| 370 |
+
.model-dropdown .select {
|
| 371 |
+
padding: 8px 12px;
|
| 372 |
+
border: 1px solid #ced4da;
|
| 373 |
+
border-radius: 4px;
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
/* Output styling */
|
| 377 |
+
.output-text {
|
| 378 |
+
border: 1px solid #ced4da;
|
| 379 |
+
border-radius: 4px;
|
| 380 |
+
padding: 10px;
|
| 381 |
+
min-height: 150px;
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
/* Add some space between elements */
|
| 385 |
+
.gr-box {
|
| 386 |
+
margin-bottom: 15px;
|
| 387 |
+
}
|
| 388 |
"""
|
| 389 |
|
| 390 |
+
# --- Gradio Interface ---
|
| 391 |
+
with gr.Blocks(css=css) as demo:
|
| 392 |
+
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
+
with gr.Row():
|
| 395 |
+
# Left sidebar - OCR section
|
| 396 |
+
with gr.Column(scale=1, min_width=250, elem_classes="sidebar"):
|
| 397 |
+
gr.Markdown("## OCR")
|
| 398 |
+
add_conv_btn = gr.Button("+ Add Conv", elem_classes="add-conv-btn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
+
# Document grid
|
| 401 |
+
gr.Markdown("### Documents")
|
| 402 |
+
with gr.Group(elem_classes="doc-grid"):
|
| 403 |
+
for i in range(5):
|
| 404 |
+
with gr.Column():
|
| 405 |
+
gr.Markdown(f'<div class="doc-item"><div class="doc-icon">📄</div>Doc {i+1}</div>')
|
| 406 |
+
|
| 407 |
+
# Main content area
|
| 408 |
+
with gr.Column(scale=3, elem_classes="content-area"):
|
| 409 |
+
# Document processing section
|
| 410 |
+
with gr.Group():
|
| 411 |
+
gr.Markdown("## Multimodal OCR2")
|
| 412 |
+
|
| 413 |
+
# Document grid (5 document thumbnails as shown in the sketch)
|
| 414 |
+
with gr.Row(elem_classes="doc-grid"):
|
| 415 |
+
for i in range(5):
|
| 416 |
+
with gr.Column():
|
| 417 |
+
doc_item = gr.Image(
|
| 418 |
+
value=None,
|
| 419 |
+
label=f"Document {i+1}",
|
| 420 |
+
height=120,
|
| 421 |
+
show_label=False,
|
| 422 |
+
container=False,
|
| 423 |
+
elem_classes="doc-item"
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Examples section
|
| 427 |
+
gr.Markdown("### Examples")
|
| 428 |
+
with gr.Row():
|
| 429 |
+
with gr.Column():
|
| 430 |
+
gr.Examples(
|
| 431 |
+
examples=image_examples,
|
| 432 |
+
inputs=[image_query, image_upload],
|
| 433 |
+
label="Image Examples"
|
| 434 |
+
)
|
| 435 |
+
with gr.Column():
|
| 436 |
+
gr.Examples(
|
| 437 |
+
examples=video_examples,
|
| 438 |
+
inputs=[video_query, video_upload],
|
| 439 |
+
label="Video Examples"
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
# File upload and controls
|
| 443 |
+
with gr.Group(elem_classes="upload-controls"):
|
| 444 |
+
# File upload area
|
| 445 |
+
with gr.Column(elem_classes="file-upload"):
|
| 446 |
+
file_upload = gr.File(
|
| 447 |
+
label="Upload files (image/video)",
|
| 448 |
+
file_types=["image", "video"],
|
| 449 |
+
elem_classes="file-upload"
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# Model dropdown
|
| 453 |
+
model_dropdown = gr.Dropdown(
|
| 454 |
+
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
|
| 455 |
+
value="Nanonets-OCR-s",
|
| 456 |
+
label="Select Model",
|
| 457 |
+
elem_classes="model-dropdown"
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# Submit button
|
| 461 |
+
submit_btn = gr.Button("→", size="lg", elem_classes="submit-btn")
|
| 462 |
+
|
| 463 |
+
# Advanced options (hidden by default)
|
| 464 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 465 |
+
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 466 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 467 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 468 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 469 |
+
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 470 |
+
|
| 471 |
+
# Query input
|
| 472 |
query_input = gr.Textbox(
|
| 473 |
+
label="Enter your query",
|
| 474 |
+
placeholder="Describe the image, extract text, convert to markdown...",
|
| 475 |
+
elem_classes="query-input"
|
| 476 |
)
|
|
|
|
| 477 |
|
| 478 |
+
# Output area
|
| 479 |
+
with gr.Group(elem_classes="output-area"):
|
| 480 |
+
gr.Markdown("### Output")
|
| 481 |
+
raw_output = gr.Textbox(
|
| 482 |
+
label="Result",
|
| 483 |
+
interactive=False,
|
| 484 |
+
lines=10,
|
| 485 |
+
elem_classes="output-text"
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
# Initialize state variables
|
| 489 |
+
image_query = gr.State("")
|
| 490 |
+
video_query = gr.State("")
|
| 491 |
+
image_upload = gr.State(None)
|
| 492 |
+
video_upload = gr.State(None)
|
| 493 |
+
media_type = gr.State("image")
|
| 494 |
|
| 495 |
# --- Event Handlers ---
|
| 496 |
+
def handle_file_upload(file):
|
| 497 |
+
if file is None:
|
| 498 |
+
return "image", None, None
|
| 499 |
+
file_path = file.name
|
| 500 |
+
if file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
|
| 501 |
+
return "image", Image.open(file_path), None
|
| 502 |
+
elif file_path.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
| 503 |
+
return "video", None, file_path
|
| 504 |
+
return "image", None, None
|
| 505 |
+
|
| 506 |
+
file_upload.change(
|
| 507 |
fn=handle_file_upload,
|
| 508 |
+
inputs=[file_upload],
|
| 509 |
+
outputs=[media_type, image_upload, video_upload]
|
| 510 |
)
|
| 511 |
+
|
| 512 |
+
def handle_model_selection(model_name):
|
| 513 |
+
# This function could be used to update the UI based on model selection
|
| 514 |
+
return f"Using {model_name}"
|
| 515 |
+
|
| 516 |
+
model_dropdown.change(
|
| 517 |
+
fn=handle_model_selection,
|
| 518 |
+
inputs=[model_dropdown],
|
| 519 |
+
outputs=[]
|
| 520 |
)
|
| 521 |
|
| 522 |
+
def generate_wrapper(text, img, vid, model, max_tokens, temp, top_p, top_k, rep_penalty, m_type):
|
| 523 |
+
if m_type == "image" and img is not None:
|
| 524 |
+
yield from generate_image_wrapper(text, img, model, max_tokens, temp, top_p, top_k, rep_penalty)
|
| 525 |
+
elif m_type == "video" and vid is not None:
|
| 526 |
+
yield from generate_video_wrapper(text, vid, model, max_tokens, temp, top_p, top_k, rep_penalty)
|
| 527 |
+
else:
|
| 528 |
+
yield "Please upload a valid file", "Please upload a valid file"
|
| 529 |
+
|
| 530 |
+
submit_btn.click(
|
| 531 |
+
fn=generate_wrapper,
|
| 532 |
+
inputs=[
|
| 533 |
+
query_input,
|
| 534 |
+
image_upload,
|
| 535 |
+
video_upload,
|
| 536 |
+
model_dropdown,
|
| 537 |
+
max_new_tokens,
|
| 538 |
+
temperature,
|
| 539 |
+
top_p,
|
| 540 |
+
top_k,
|
| 541 |
+
repetition_penalty,
|
| 542 |
+
media_type
|
| 543 |
+
],
|
| 544 |
+
outputs=[raw_output, raw_output]
|
| 545 |
)
|
| 546 |
|
|
|
|
| 547 |
if __name__ == "__main__":
|
| 548 |
demo.queue(max_size=50).launch(share=True, show_error=True)
|