Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import random
|
| 3 |
-
import
|
| 4 |
-
import
|
|
|
|
| 5 |
import asyncio
|
| 6 |
from threading import Thread
|
| 7 |
|
|
@@ -11,69 +12,82 @@ import torch
|
|
| 11 |
import numpy as np
|
| 12 |
from PIL import Image, ImageOps
|
| 13 |
import cv2
|
|
|
|
| 14 |
from transformers import (
|
|
|
|
| 15 |
Qwen2_5_VLForConditionalGeneration,
|
|
|
|
| 16 |
AutoModelForVision2Seq,
|
| 17 |
AutoProcessor,
|
| 18 |
TextIteratorStreamer,
|
| 19 |
)
|
|
|
|
| 20 |
|
| 21 |
from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
MAX_MAX_NEW_TOKENS = 5120
|
| 25 |
DEFAULT_MAX_NEW_TOKENS = 3072
|
| 26 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 27 |
-
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
-
|
| 29 |
-
# --- Model Loading ---
|
| 30 |
-
def load_model(model_id, model_class, subfolder=None):
|
| 31 |
-
"""Generic function to load a model and its processor."""
|
| 32 |
-
processor_kwargs = {"trust_remote_code": True}
|
| 33 |
-
model_kwargs = {"trust_remote_code": True, "torch_dtype": torch.float16}
|
| 34 |
|
| 35 |
-
|
| 36 |
-
processor_kwargs["subfolder"] = subfolder
|
| 37 |
-
model_kwargs["subfolder"] = subfolder
|
| 38 |
-
|
| 39 |
-
processor = AutoProcessor.from_pretrained(model_id, **processor_kwargs)
|
| 40 |
-
model = model_class.from_pretrained(model_id, **model_kwargs).to(DEVICE).eval()
|
| 41 |
-
return processor, model
|
| 42 |
|
| 43 |
# Load Nanonets-OCR-s
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# Load MonkeyOCR
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Load Typhoon-OCR-7B
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Load SmolDocling-256M-preview
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Thyme-RL
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
"Thyme-RL": (processor_n, model_n),
|
| 74 |
-
}
|
| 75 |
-
|
| 76 |
-
# --- Preprocessing Functions ---
|
| 77 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
| 78 |
"""Add random padding to an image based on its size."""
|
| 79 |
image = image.convert("RGB")
|
|
@@ -82,81 +96,94 @@ def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
|
| 82 |
pad_h_percent = random.uniform(min_percent, max_percent)
|
| 83 |
pad_w = int(width * pad_w_percent)
|
| 84 |
pad_h = int(height * pad_h_percent)
|
| 85 |
-
corner_pixel = image.getpixel((0, 0))
|
| 86 |
-
padded_image = ImageOps.expand(
|
| 87 |
-
image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel
|
| 88 |
-
)
|
| 89 |
return padded_image
|
| 90 |
|
| 91 |
def normalize_values(text, target_max=500):
|
| 92 |
-
"""Normalize numerical values in text to a target maximum
|
| 93 |
def normalize_list(values):
|
| 94 |
max_value = max(values) if values else 1
|
| 95 |
return [round((v / max_value) * target_max) for v in values]
|
| 96 |
|
| 97 |
def process_match(match):
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
return "".join([f"<loc_{num}>" for num in normalized])
|
| 102 |
-
except (ValueError, SyntaxError):
|
| 103 |
-
return match.group(0)
|
| 104 |
|
| 105 |
pattern = r"\[([\d\.\s,]+)\]"
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
-
def downsample_video(video_path
|
| 109 |
-
"""Downsample a video to evenly spaced frames, returning PIL images."""
|
| 110 |
-
if not video_path:
|
| 111 |
-
return []
|
| 112 |
vidcap = cv2.VideoCapture(video_path)
|
| 113 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
| 114 |
frames = []
|
| 115 |
-
frame_indices = np.linspace(0, total_frames - 1,
|
| 116 |
-
|
| 117 |
for i in frame_indices:
|
| 118 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 119 |
success, image = vidcap.read()
|
| 120 |
if success:
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
vidcap.release()
|
| 124 |
return frames
|
| 125 |
|
| 126 |
-
|
| 127 |
-
def
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
return
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
except KeyError:
|
| 136 |
-
yield "Invalid model selected.", ""
|
| 137 |
return
|
| 138 |
|
| 139 |
-
|
|
|
|
| 140 |
if model_name == "SmolDocling-256M-preview":
|
| 141 |
-
if
|
| 142 |
images = [add_random_padding(img) for img in images]
|
| 143 |
-
if
|
| 144 |
text = normalize_values(text, target_max=500)
|
| 145 |
|
| 146 |
messages = [
|
| 147 |
{
|
| 148 |
"role": "user",
|
| 149 |
-
"content": [{"type": "image"}
|
|
|
|
|
|
|
| 150 |
}
|
| 151 |
]
|
| 152 |
-
|
| 153 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 154 |
-
inputs = processor(text=prompt, images=images, return_tensors="pt").to(
|
| 155 |
-
|
| 156 |
-
streamer = TextIteratorStreamer(
|
| 157 |
-
processor, skip_prompt=True, skip_special_tokens=True
|
| 158 |
-
)
|
| 159 |
|
|
|
|
| 160 |
generation_kwargs = {
|
| 161 |
**inputs,
|
| 162 |
"streamer": streamer,
|
|
@@ -166,7 +193,6 @@ def _generate_response(model_name, text, images, max_new_tokens, temperature, to
|
|
| 166 |
"top_k": top_k,
|
| 167 |
"repetition_penalty": repetition_penalty,
|
| 168 |
}
|
| 169 |
-
|
| 170 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 171 |
thread.start()
|
| 172 |
|
|
@@ -175,70 +201,102 @@ def _generate_response(model_name, text, images, max_new_tokens, temperature, to
|
|
| 175 |
buffer += new_text.replace("<|im_end|>", "")
|
| 176 |
yield buffer, buffer
|
| 177 |
|
| 178 |
-
# Model-specific post-processing
|
| 179 |
if model_name == "SmolDocling-256M-preview":
|
| 180 |
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 181 |
-
|
| 182 |
-
tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]
|
| 183 |
-
)
|
| 184 |
-
if is_doc_tag:
|
| 185 |
if "<chart>" in cleaned_output:
|
| 186 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
| 187 |
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
markdown_output = doc.export_to_markdown()
|
| 193 |
-
yield buffer, markdown_output
|
| 194 |
-
except Exception as e:
|
| 195 |
-
yield buffer, f"Error processing Docling output: {e}"
|
| 196 |
else:
|
| 197 |
yield buffer, cleaned_output
|
| 198 |
|
| 199 |
@spaces.GPU
|
| 200 |
-
def
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return
|
| 205 |
-
yield from _generate_response(model_name, text, [image], *args)
|
| 206 |
|
| 207 |
-
|
| 208 |
-
@spaces.GPU
|
| 209 |
-
def generate_for_video(model_name, text, video_path, *args):
|
| 210 |
-
"""Generate responses for video input by downsampling frames."""
|
| 211 |
if video_path is None:
|
| 212 |
-
yield "Please upload a video.", ""
|
| 213 |
return
|
|
|
|
| 214 |
frames = downsample_video(video_path)
|
| 215 |
-
|
| 216 |
-
yield "Could not process video. Please check the file.", ""
|
| 217 |
-
return
|
| 218 |
-
yield from _generate_response(model_name, text, frames, *args)
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
.
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
# Define examples
|
| 242 |
image_examples = [
|
| 243 |
["Reconstruct the doc [table] as it is.", "images/0.png"],
|
| 244 |
["Describe the image!", "images/8.png"],
|
|
@@ -248,101 +306,92 @@ image_examples = [
|
|
| 248 |
["Convert chart to OTSL.", "images/4.png"],
|
| 249 |
["Convert code to text", "images/5.jpg"],
|
| 250 |
["Convert this table to OTSL.", "images/6.jpg"],
|
| 251 |
-
["Convert formula to
|
| 252 |
]
|
| 253 |
|
| 254 |
video_examples = [
|
| 255 |
["Explain the video in detail.", "videos/1.mp4"],
|
| 256 |
-
["Explain the video in detail.", "videos/2.mp4"]
|
| 257 |
]
|
| 258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 260 |
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
| 261 |
-
gr.Markdown("A unified interface for state-of-the-art multimodal and document AI models. Select a model, upload an image or video, and enter a query to begin.")
|
| 262 |
-
|
| 263 |
with gr.Row():
|
| 264 |
-
|
| 265 |
-
with gr.Column(scale=1):
|
| 266 |
-
model_choice = gr.Dropdown(
|
| 267 |
-
choices=[
|
| 268 |
-
"Nanonets-OCR-s",
|
| 269 |
-
"MonkeyOCR-Recognition",
|
| 270 |
-
"Thyme-RL",
|
| 271 |
-
"Typhoon-OCR-7B",
|
| 272 |
-
"SmolDocling-256M-preview",
|
| 273 |
-
],
|
| 274 |
-
label="Select Model⚡",
|
| 275 |
-
value="Nanonets-OCR-s",
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
with gr.Tabs():
|
| 279 |
-
with gr.TabItem("
|
| 280 |
-
image_query = gr.Textbox(label="Query", placeholder="
|
| 281 |
-
image_upload = gr.Image(type="pil", label="
|
| 282 |
-
image_submit = gr.Button("
|
| 283 |
-
gr.Examples(
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
gr.
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
advanced_params = [max_new_tokens, temperature, top_p, top_k, repetition_penalty]
|
| 308 |
-
|
| 309 |
-
# --- RIGHT COLUMN (OUTPUTS & INFO) ---
|
| 310 |
-
with gr.Column(scale=2):
|
| 311 |
-
with gr.Column(elem_classes="output-container"):
|
| 312 |
gr.Markdown("## Output")
|
| 313 |
-
raw_output = gr.Textbox(
|
| 314 |
-
|
| 315 |
-
)
|
| 316 |
with gr.Accordion("(Result.md)", open=False):
|
| 317 |
-
formatted_output = gr.Markdown(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
-
with gr.Accordion("💻 Model Information", open=True):
|
| 320 |
-
gr.Markdown(
|
| 321 |
-
"""
|
| 322 |
-
- **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.
|
| 323 |
-
- **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.
|
| 324 |
-
- **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.
|
| 325 |
-
- **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.
|
| 326 |
-
- **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Think Beyond Images. Thyme transcends traditional ``thinking with images'' paradigms by autonomously generating and executing diverse image processing and computational operations through executable code, significantly enhancing performance on high-resolution perception and complex reasoning tasks.
|
| 327 |
-
|
| 328 |
-
- **⚠️Note**: Performance on video inference tasks is experimental and may vary between models.
|
| 329 |
-
|
| 330 |
-
> [Report a Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)
|
| 331 |
-
"""
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
# --- Event Handlers ---
|
| 335 |
image_submit.click(
|
| 336 |
-
fn=
|
| 337 |
-
inputs=[model_choice, image_query, image_upload
|
| 338 |
-
outputs=[raw_output, formatted_output]
|
| 339 |
)
|
| 340 |
-
|
| 341 |
video_submit.click(
|
| 342 |
-
fn=
|
| 343 |
-
inputs=[model_choice, video_query, video_upload
|
| 344 |
-
outputs=[raw_output,
|
|
|
|
| 345 |
)
|
| 346 |
|
| 347 |
if __name__ == "__main__":
|
| 348 |
-
demo.queue(max_size=50).launch(share=True, show_error=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
| 8 |
|
|
|
|
| 12 |
import numpy as np
|
| 13 |
from PIL import Image, ImageOps
|
| 14 |
import cv2
|
| 15 |
+
|
| 16 |
from transformers import (
|
| 17 |
+
Qwen2VLForConditionalGeneration,
|
| 18 |
Qwen2_5_VLForConditionalGeneration,
|
| 19 |
+
AutoModelForCausalLM,
|
| 20 |
AutoModelForVision2Seq,
|
| 21 |
AutoProcessor,
|
| 22 |
TextIteratorStreamer,
|
| 23 |
)
|
| 24 |
+
from transformers.image_utils import load_image
|
| 25 |
|
| 26 |
from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
| 27 |
|
| 28 |
+
import re
|
| 29 |
+
import ast
|
| 30 |
+
import html
|
| 31 |
+
|
| 32 |
+
# Constants for text generation
|
| 33 |
MAX_MAX_NEW_TOKENS = 5120
|
| 34 |
DEFAULT_MAX_NEW_TOKENS = 3072
|
| 35 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Load Nanonets-OCR-s
|
| 40 |
+
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
|
| 41 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 42 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 43 |
+
MODEL_ID_M,
|
| 44 |
+
trust_remote_code=True,
|
| 45 |
+
torch_dtype=torch.float16
|
| 46 |
+
).to(device).eval()
|
| 47 |
|
| 48 |
# Load MonkeyOCR
|
| 49 |
+
MODEL_ID_G = "echo840/MonkeyOCR"
|
| 50 |
+
SUBFOLDER = "Recognition"
|
| 51 |
+
processor_g = AutoProcessor.from_pretrained(
|
| 52 |
+
MODEL_ID_G,
|
| 53 |
+
trust_remote_code=True,
|
| 54 |
+
subfolder=SUBFOLDER
|
| 55 |
)
|
| 56 |
+
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 57 |
+
MODEL_ID_G,
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
subfolder=SUBFOLDER,
|
| 60 |
+
torch_dtype=torch.float16
|
| 61 |
+
).to(device).eval()
|
| 62 |
|
| 63 |
# Load Typhoon-OCR-7B
|
| 64 |
+
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
|
| 65 |
+
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
|
| 66 |
+
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 67 |
+
MODEL_ID_L,
|
| 68 |
+
trust_remote_code=True,
|
| 69 |
+
torch_dtype=torch.float16
|
| 70 |
+
).to(device).eval()
|
| 71 |
|
| 72 |
# Load SmolDocling-256M-preview
|
| 73 |
+
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
|
| 74 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 75 |
+
model_x = AutoModelForVision2Seq.from_pretrained(
|
| 76 |
+
MODEL_ID_X,
|
| 77 |
+
trust_remote_code=True,
|
| 78 |
+
torch_dtype=torch.float16
|
| 79 |
+
).to(device).eval()
|
| 80 |
|
| 81 |
# Thyme-RL
|
| 82 |
+
MODEL_ID_N = "Kwai-Keye/Thyme-RL"
|
| 83 |
+
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
|
| 84 |
+
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 85 |
+
MODEL_ID_N,
|
| 86 |
+
trust_remote_code=True,
|
| 87 |
+
torch_dtype=torch.float16
|
| 88 |
+
).to(device).eval()
|
| 89 |
+
|
| 90 |
+
# Preprocessing functions for SmolDocling-256M
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
| 92 |
"""Add random padding to an image based on its size."""
|
| 93 |
image = image.convert("RGB")
|
|
|
|
| 96 |
pad_h_percent = random.uniform(min_percent, max_percent)
|
| 97 |
pad_w = int(width * pad_w_percent)
|
| 98 |
pad_h = int(height * pad_h_percent)
|
| 99 |
+
corner_pixel = image.getpixel((0, 0)) # Top-left corner
|
| 100 |
+
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
|
|
|
|
|
|
|
| 101 |
return padded_image
|
| 102 |
|
| 103 |
def normalize_values(text, target_max=500):
|
| 104 |
+
"""Normalize numerical values in text to a target maximum."""
|
| 105 |
def normalize_list(values):
|
| 106 |
max_value = max(values) if values else 1
|
| 107 |
return [round((v / max_value) * target_max) for v in values]
|
| 108 |
|
| 109 |
def process_match(match):
|
| 110 |
+
num_list = ast.literal_eval(match.group(0))
|
| 111 |
+
normalized = normalize_list(num_list)
|
| 112 |
+
return "".join([f"<loc_{num}>" for num in normalized])
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
pattern = r"\[([\d\.\s,]+)\]"
|
| 115 |
+
normalized_text = re.sub(pattern, process_match, text)
|
| 116 |
+
return normalized_text
|
| 117 |
|
| 118 |
+
def downsample_video(video_path):
|
| 119 |
+
"""Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
|
|
|
|
|
|
|
| 120 |
vidcap = cv2.VideoCapture(video_path)
|
| 121 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 122 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 123 |
frames = []
|
| 124 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
|
|
|
| 125 |
for i in frame_indices:
|
| 126 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 127 |
success, image = vidcap.read()
|
| 128 |
if success:
|
| 129 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 130 |
+
pil_image = Image.fromarray(image)
|
| 131 |
+
timestamp = round(i / fps, 2)
|
| 132 |
+
frames.append((pil_image, timestamp))
|
| 133 |
vidcap.release()
|
| 134 |
return frames
|
| 135 |
|
| 136 |
+
@spaces.GPU
|
| 137 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 138 |
+
max_new_tokens: int = 1024,
|
| 139 |
+
temperature: float = 0.6,
|
| 140 |
+
top_p: float = 0.9,
|
| 141 |
+
top_k: int = 50,
|
| 142 |
+
repetition_penalty: float = 1.2):
|
| 143 |
+
"""Generate responses for image input using the selected model."""
|
| 144 |
+
if model_name == "Nanonets-OCR-s":
|
| 145 |
+
processor = processor_m
|
| 146 |
+
model = model_m
|
| 147 |
+
elif model_name == "MonkeyOCR-Recognition":
|
| 148 |
+
processor = processor_g
|
| 149 |
+
model = model_g
|
| 150 |
+
elif model_name == "SmolDocling-256M-preview":
|
| 151 |
+
processor = processor_x
|
| 152 |
+
model = model_x
|
| 153 |
+
elif model_name == "Typhoon-OCR-7B":
|
| 154 |
+
processor = processor_l
|
| 155 |
+
model = model_l
|
| 156 |
+
elif model_name == "Thyme-RL":
|
| 157 |
+
processor = processor_n
|
| 158 |
+
model = model_n
|
| 159 |
+
else:
|
| 160 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 161 |
return
|
| 162 |
|
| 163 |
+
if image is None:
|
| 164 |
+
yield "Please upload an image.", "Please upload an image."
|
|
|
|
|
|
|
| 165 |
return
|
| 166 |
|
| 167 |
+
images = [image]
|
| 168 |
+
|
| 169 |
if model_name == "SmolDocling-256M-preview":
|
| 170 |
+
if "OTSL" in text or "code" in text:
|
| 171 |
images = [add_random_padding(img) for img in images]
|
| 172 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 173 |
text = normalize_values(text, target_max=500)
|
| 174 |
|
| 175 |
messages = [
|
| 176 |
{
|
| 177 |
"role": "user",
|
| 178 |
+
"content": [{"type": "image"} for _ in images] + [
|
| 179 |
+
{"type": "text", "text": text}
|
| 180 |
+
]
|
| 181 |
}
|
| 182 |
]
|
|
|
|
| 183 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 184 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 187 |
generation_kwargs = {
|
| 188 |
**inputs,
|
| 189 |
"streamer": streamer,
|
|
|
|
| 193 |
"top_k": top_k,
|
| 194 |
"repetition_penalty": repetition_penalty,
|
| 195 |
}
|
|
|
|
| 196 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 197 |
thread.start()
|
| 198 |
|
|
|
|
| 201 |
buffer += new_text.replace("<|im_end|>", "")
|
| 202 |
yield buffer, buffer
|
| 203 |
|
|
|
|
| 204 |
if model_name == "SmolDocling-256M-preview":
|
| 205 |
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 206 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
|
|
|
|
|
|
|
|
|
| 207 |
if "<chart>" in cleaned_output:
|
| 208 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
| 209 |
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
| 210 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 211 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 212 |
+
markdown_output = doc.export_to_markdown()
|
| 213 |
+
yield buffer, markdown_output
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
else:
|
| 215 |
yield buffer, cleaned_output
|
| 216 |
|
| 217 |
@spaces.GPU
|
| 218 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
| 219 |
+
max_new_tokens: int = 1024,
|
| 220 |
+
temperature: float = 0.6,
|
| 221 |
+
top_p: float = 0.9,
|
| 222 |
+
top_k: int = 50,
|
| 223 |
+
repetition_penalty: float = 1.2):
|
| 224 |
+
"""Generate responses for video input using the selected model."""
|
| 225 |
+
if model_name == "Nanonets-OCR-s":
|
| 226 |
+
processor = processor_m
|
| 227 |
+
model = model_m
|
| 228 |
+
elif model_name == "MonkeyOCR-Recognition":
|
| 229 |
+
processor = processor_g
|
| 230 |
+
model = model_g
|
| 231 |
+
elif model_name == "SmolDocling-256M-preview":
|
| 232 |
+
processor = processor_x
|
| 233 |
+
model = model_x
|
| 234 |
+
elif model_name == "Typhoon-OCR-7B":
|
| 235 |
+
processor = processor_l
|
| 236 |
+
model = model_l
|
| 237 |
+
elif model_name == "Thyme-RL":
|
| 238 |
+
processor = processor_n
|
| 239 |
+
model = model_n
|
| 240 |
+
else:
|
| 241 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 242 |
return
|
|
|
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
if video_path is None:
|
| 245 |
+
yield "Please upload a video.", "Please upload a video."
|
| 246 |
return
|
| 247 |
+
|
| 248 |
frames = downsample_video(video_path)
|
| 249 |
+
images = [frame for frame, _ in frames]
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
+
if model_name == "SmolDocling-256M-preview":
|
| 252 |
+
if "OTSL" in text or "code" in text:
|
| 253 |
+
images = [add_random_padding(img) for img in images]
|
| 254 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 255 |
+
text = normalize_values(text, target_max=500)
|
| 256 |
|
| 257 |
+
messages = [
|
| 258 |
+
{
|
| 259 |
+
"role": "user",
|
| 260 |
+
"content": [{"type": "image"} for _ in images] + [
|
| 261 |
+
{"type": "text", "text": text}
|
| 262 |
+
]
|
| 263 |
+
}
|
| 264 |
+
]
|
| 265 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 266 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
| 267 |
+
|
| 268 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 269 |
+
generation_kwargs = {
|
| 270 |
+
**inputs,
|
| 271 |
+
"streamer": streamer,
|
| 272 |
+
"max_new_tokens": max_new_tokens,
|
| 273 |
+
"temperature": temperature,
|
| 274 |
+
"top_p": top_p,
|
| 275 |
+
"top_k": top_k,
|
| 276 |
+
"repetition_penalty": repetition_penalty,
|
| 277 |
+
}
|
| 278 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 279 |
+
thread.start()
|
| 280 |
+
|
| 281 |
+
buffer = ""
|
| 282 |
+
for new_text in streamer:
|
| 283 |
+
buffer += new_text.replace("<|im_end|>", "")
|
| 284 |
+
yield buffer, buffer
|
| 285 |
+
|
| 286 |
+
if model_name == "SmolDocling-256M-preview":
|
| 287 |
+
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 288 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 289 |
+
if "<chart>" in cleaned_output:
|
| 290 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
| 291 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
| 292 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 293 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 294 |
+
markdown_output = doc.export_to_markdown()
|
| 295 |
+
yield buffer, markdown_output
|
| 296 |
+
else:
|
| 297 |
+
yield buffer, cleaned_output
|
| 298 |
|
| 299 |
+
# Define examples for image and video inference
|
| 300 |
image_examples = [
|
| 301 |
["Reconstruct the doc [table] as it is.", "images/0.png"],
|
| 302 |
["Describe the image!", "images/8.png"],
|
|
|
|
| 306 |
["Convert chart to OTSL.", "images/4.png"],
|
| 307 |
["Convert code to text", "images/5.jpg"],
|
| 308 |
["Convert this table to OTSL.", "images/6.jpg"],
|
| 309 |
+
["Convert formula to late.", "images/7.jpg"],
|
| 310 |
]
|
| 311 |
|
| 312 |
video_examples = [
|
| 313 |
["Explain the video in detail.", "videos/1.mp4"],
|
| 314 |
+
["Explain the video in detail.", "videos/2.mp4"]
|
| 315 |
]
|
| 316 |
|
| 317 |
+
#css
|
| 318 |
+
css = """
|
| 319 |
+
.submit-btn {
|
| 320 |
+
background-color: #2980b9 !important;
|
| 321 |
+
color: white !important;
|
| 322 |
+
}
|
| 323 |
+
.submit-btn:hover {
|
| 324 |
+
background-color: #3498db !important;
|
| 325 |
+
}
|
| 326 |
+
.canvas-output {
|
| 327 |
+
border: 2px solid #4682B4;
|
| 328 |
+
border-radius: 10px;
|
| 329 |
+
padding: 20px;
|
| 330 |
+
}
|
| 331 |
+
"""
|
| 332 |
+
|
| 333 |
+
# Create the Gradio Interface
|
| 334 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 335 |
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
|
|
|
|
|
|
| 336 |
with gr.Row():
|
| 337 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
with gr.Tabs():
|
| 339 |
+
with gr.TabItem("Image Inference"):
|
| 340 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 341 |
+
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 342 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 343 |
+
gr.Examples(
|
| 344 |
+
examples=image_examples,
|
| 345 |
+
inputs=[image_query, image_upload]
|
| 346 |
+
)
|
| 347 |
+
with gr.TabItem("Video Inference"):
|
| 348 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 349 |
+
video_upload = gr.Video(label="Video", height=290)
|
| 350 |
+
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 351 |
+
gr.Examples(
|
| 352 |
+
examples=video_examples,
|
| 353 |
+
inputs=[video_query, video_upload]
|
| 354 |
+
)
|
| 355 |
+
with gr.Accordion("Advanced options", open=False):
|
| 356 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 357 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 358 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 359 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 360 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 361 |
+
|
| 362 |
+
with gr.Column():
|
| 363 |
+
with gr.Column(elem_classes="canvas-output"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
gr.Markdown("## Output")
|
| 365 |
+
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=5)
|
| 366 |
+
|
|
|
|
| 367 |
with gr.Accordion("(Result.md)", open=False):
|
| 368 |
+
formatted_output = gr.Markdown(label="(Result.md)")
|
| 369 |
+
|
| 370 |
+
model_choice = gr.Radio(
|
| 371 |
+
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
|
| 372 |
+
label="Select Model",
|
| 373 |
+
value="Nanonets-OCR-s"
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)")
|
| 377 |
+
gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 378 |
+
gr.Markdown("> [SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview): SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.")
|
| 379 |
+
gr.Markdown("> [MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
|
| 380 |
+
gr.Markdown("> [Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b): A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.")
|
| 381 |
+
gr.Markdown("> [Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL): Thyme: Think Beyond Images. Thyme transcends traditional ``thinking with images'' paradigms by autonomously generating and executing diverse image processing and computational operations through executable code, significantly enhancing performance on high-resolution perception and complex reasoning tasks.")
|
| 382 |
+
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
image_submit.click(
|
| 385 |
+
fn=generate_image,
|
| 386 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 387 |
+
outputs=[raw_output, formatted_output]
|
| 388 |
)
|
|
|
|
| 389 |
video_submit.click(
|
| 390 |
+
fn=generate_video,
|
| 391 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 392 |
+
outputs=[raw_output,
|
| 393 |
+
formatted_output]
|
| 394 |
)
|
| 395 |
|
| 396 |
if __name__ == "__main__":
|
| 397 |
+
demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|