Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,301 Bytes
81d2b64 d69431d 81d2b64 d69431d 81d2b64 063e299 81d2b64 d69431d 063e299 d69431d 063e299 81d2b64 d69431d 81d2b64 d69431d 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 d69431d 063e299 d69431d 063e299 d69431d fdfdc4e 063e299 fdfdc4e d69431d e4cff5c d69431d 063e299 d69431d 063e299 d69431d 063e299 d69431d 063e299 81d2b64 d69431d 81d2b64 063e299 d69431d 063e299 81d2b64 063e299 d69431d 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 d69431d 81d2b64 d69431d 063e299 d69431d 81d2b64 063e299 d69431d 81d2b64 063e299 d69431d 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 d69431d 81d2b64 d69431d 81d2b64 d69431d 063e299 d69431d 81d2b64 d69431d 81d2b64 d69431d 063e299 d69431d 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 063e299 81d2b64 d69431d 063e299 81d2b64 063e299 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
import supervision as sv
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("--- System Information ---")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("CUDA available:", torch.cuda.is_available())
print("CUDA device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("Current device:", torch.cuda.current_device())
print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
print("--------------------------")
# --- Model Loading ---
# Load Camel-Doc-OCR-062825
print("Loading Camel-Doc-OCR-062825...")
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
print("Camel-Doc-OCR-062825 loaded.")
# MinerU2.5-2509
print("Loading MinerU2.5-2509...")
MODEL_ID_T = "opendatalab/MinerU2.5-2509-1.2B"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
print("MinerU2.5-2509 loaded.")
# Load Video-MTR
print("Loading Video-MTR...")
MODEL_ID_S = "Phoebe13/Video-MTR"
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_S,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
print("Video-MTR loaded.")
# Load moondream3
print("Loading moondream3-preview...")
MODEL_ID_MD3 = "moondream/moondream3-preview"
model_md3 = AutoModelForCausalLM.from_pretrained(
MODEL_ID_MD3,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map={"": "cuda"},
)
model_md3.compile()
print("moondream3-preview loaded and compiled.")
# --- Moondream3 Utility Functions ---
def create_annotated_image(image, detection_result, object_name="Object"):
if not isinstance(detection_result, dict) or "objects" not in detection_result:
return image
original_width, original_height = image.size
annotated_image = np.array(image.convert("RGB"))
bboxes = []
labels = []
for i, obj in enumerate(detection_result["objects"]):
x_min = int(obj["x_min"] * original_width)
y_min = int(obj["y_min"] * original_height)
x_max = int(obj["x_max"] * original_width)
y_max = int(obj["y_max"] * original_height)
x_min = max(0, min(x_min, original_width))
y_min = max(0, min(y_min, original_height))
x_max = max(0, min(x_max, original_width))
y_max = max(0, min(y_max, original_height))
if x_max > x_min and y_max > y_min:
bboxes.append([x_min, y_min, x_max, y_max])
labels.append(f"{object_name} {i+1}")
if not bboxes:
return image
detections = sv.Detections(
xyxy=np.array(bboxes, dtype=np.float32),
class_id=np.arange(len(bboxes))
)
bounding_box_annotator = sv.BoxAnnotator(
thickness=3,
color_lookup=sv.ColorLookup.INDEX
)
label_annotator = sv.LabelAnnotator(
text_thickness=2,
text_scale=0.6,
color_lookup=sv.ColorLookup.INDEX
)
annotated_image = bounding_box_annotator.annotate(
scene=annotated_image, detections=detections
)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections, labels=labels
)
return Image.fromarray(annotated_image)
@spaces.GPU()
def process_video_with_tracking(video_path, prompt, detection_interval=3):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
byte_tracker = sv.ByteTrack()
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "tracked_video.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
detection_count = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
run_detection = (frame_count % detection_interval == 0)
detections = sv.Detections.empty()
if run_detection:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
result = model_md3.detect(pil_image, prompt)
detection_count += 1
if "objects" in result and result["objects"]:
bboxes = []
confidences = []
for obj in result["objects"]:
x_min = max(0.0, min(1.0, obj["x_min"])) * width
y_min = max(0.0, min(1.0, obj["y_min"])) * height
x_max = max(0.0, min(1.0, obj["x_max"])) * width
y_max = max(0.0, min(1.0, obj["y_max"])) * height
if x_max > x_min and y_max > y_min:
bboxes.append([x_min, y_min, x_max, y_max])
confidences.append(0.8)
if bboxes:
detections = sv.Detections(
xyxy=np.array(bboxes, dtype=np.float32),
confidence=np.array(confidences, dtype=np.float32),
class_id=np.zeros(len(bboxes), dtype=int)
)
detections = byte_tracker.update_with_detections(detections)
if len(detections) > 0:
box_annotator = sv.BoxAnnotator(thickness=3, color_lookup=sv.ColorLookup.TRACK)
label_annotator = sv.LabelAnnotator(text_scale=0.6, text_thickness=2, color_lookup=sv.ColorLookup.TRACK)
labels = [f"{prompt} ID: {tracker_id}" for tracker_id in detections.tracker_id]
frame = box_annotator.annotate(scene=frame, detections=detections)
frame = label_annotator.annotate(scene=frame, detections=detections, labels=labels)
out.write(frame)
frame_count += 1
if frame_count % 30 == 0:
progress = (frame_count / total_frames) * 100
print(f"Processing: {progress:.1f}% ({frame_count}/{total_frames}) - Detections: {detection_count}")
finally:
cap.release()
out.release()
summary = f"""Video processing complete:
- Total frames processed: {frame_count}
- Detection runs: {detection_count} (every {detection_interval} frames)
- Objects tracked: {prompt}
- Processing speed: ~{detection_count/frame_count*100:.1f}% detection rate for optimization"""
return output_path, summary
def create_point_annotated_image(image, point_result):
if not isinstance(point_result, dict) or "points" not in point_result:
return image
original_width, original_height = image.size
annotated_image = np.array(image.convert("RGB"))
points = []
for point in point_result["points"]:
x = int(point["x"] * original_width)
y = int(point["y"] * original_height)
points.append([x, y])
if points:
points_array = np.array(points).reshape(1, -1, 2)
key_points = sv.KeyPoints(xy=points_array)
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
annotated_image = vertex_annotator.annotate(
scene=annotated_image, key_points=key_points
)
return Image.fromarray(annotated_image)
@spaces.GPU()
def detect_objects_md3(image, prompt, task_type, max_objects):
STANDARD_SIZE = (1024, 1024)
if image is None:
raise gr.Error("Please upload an image.")
image.thumbnail(STANDARD_SIZE)
t0 = time.perf_counter()
if task_type == "Object Detection":
settings = {"max_objects": max_objects} if max_objects > 0 else {}
result = model_md3.detect(image, prompt, settings=settings)
annotated_image = create_annotated_image(image, result, prompt)
elif task_type == "Point Detection":
result = model_md3.point(image, prompt)
annotated_image = create_point_annotated_image(image, result)
elif task_type == "Caption":
result = model_md3.caption(image, length="normal")
annotated_image = image
else:
result = model_md3.query(image=image, question=prompt, reasoning=True)
annotated_image = image
elapsed_ms = (time.perf_counter() - t0) * 1_000
if isinstance(result, dict):
if "objects" in result:
output_text = f"Found {len(result['objects'])} objects:\n"
for i, obj in enumerate(result['objects'], 1):
output_text += f"\n{i}. Bounding box: ({obj['x_min']:.3f}, {obj['y_min']:.3f}, {obj['x_max']:.3f}, {obj['y_max']:.3f})"
elif "points" in result:
output_text = f"Found {len(result['points'])} points:\n"
for i, point in enumerate(result['points'], 1):
output_text += f"\n{i}. Point: ({point['x']:.3f}, {point['y']:.3f})"
elif "caption" in result:
output_text = result['caption']
elif "answer" in result:
output_text = f"Reasoning: {result.get('reasoning', 'N/A')}\n\nAnswer: {result['answer']}"
else:
output_text = json.dumps(result, indent=2)
else:
output_text = str(result)
timing_text = f"Inference time: {elapsed_ms:.0f} ms"
return annotated_image, output_text, timing_text
def process_video_md3(video_file, prompt, detection_interval):
if video_file is None:
return None, "Please upload a video file"
output_path, summary = process_video_with_tracking(video_file, prompt, detection_interval)
return output_path, summary
# --- Core Application Logic (for other models) ---
@spaces.GPU
def process_document_stream(
model_name: str,
image: Image.Image,
prompt_input: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float
):
"""
Main generator function for models other than Moondream3.
"""
if image is None:
yield "Please upload an image."
return
if not prompt_input or not prompt_input.strip():
yield "Please enter a prompt."
return
# Select processor and model based on dropdown choice
if model_name == "Camel-Doc-OCR-062825 (OCR)":
processor, model = processor_m, model_m
elif model_name == "MinerU2.5-2509 (General)":
processor, model = processor_t, model_t
elif model_name == "Video-MTR (Video/Text)":
processor, model = processor_s, model_s
else:
yield "Invalid model selected."
return
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_input}]}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"do_sample": True if temperature > 0 else False
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# Clean up potential model-specific tokens
buffer = buffer.replace("<|im_end|>", "").replace("</s>", "")
time.sleep(0.01)
yield buffer
# --- Gradio UI Definition ---
def create_gradio_interface():
"""Builds and returns the Gradio web interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.Markdown("# Multimodal VLM v1.0 🚀")
gr.Markdown("Explore the capabilities of various Vision Language Models for tasks like OCR, VQA, Object Detection, and Video Tracking.")
with gr.Tabs():
# --- TAB 1: Document and General VLMs ---
with gr.TabItem("📄 Document & General VLM"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Configure Inputs")
model_choice = gr.Dropdown(
choices=["Camel-Doc-OCR-062825 (OCR)", "MinerU2.5-2509 (General)", "Video-MTR (Video/Text)"],
label="Select Model", value= "Camel-Doc-OCR-062825 (OCR)"
)
image_input_doc = gr.Image(label="Upload Image", type="pil", sources=['upload'])
prompt_input_doc = gr.Textbox(label="Query Input", placeholder="e.g., 'Transcribe the text in this document.'")
with gr.Accordion("Advanced Generation Settings", open=False):
max_new_tokens = gr.Slider(minimum=256, maximum=4096, value=2048, step=128, label="Max New Tokens")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7)
top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=40)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"])
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
with gr.Column(scale=2):
gr.Markdown("### 2. View Output")
output_stream = gr.Textbox(label="Model Output", interactive=False, lines=20, show_copy_button=True)
gr.Examples(
examples=[
["examples/1.png", "Transcribe this receipt."],
["examples/2.png", "Extract the table from this document as markdown."],
["examples/3.png", "What information is presented in this infographic?"],
],
inputs=[image_input_doc, prompt_input_doc]
)
# --- TAB 2: Moondream3 Lab ---
with gr.TabItem("🌝 Moondream3 Lab"):
with gr.Tabs():
with gr.TabItem("🖼️ Image Processing"):
with gr.Row():
with gr.Column(scale=1):
md3_image_input = gr.Image(label="Upload an image", type="pil", height=400)
md3_task_type = gr.Radio(
choices=["Object Detection", "Point Detection", "Caption", "Visual Question Answering"],
label="Task Type", value="Object Detection"
)
md3_prompt_input = gr.Textbox(
label="Prompt (object to detect/question to ask)",
placeholder="e.g., 'car', 'person', 'What's in this image?'", value="objects"
)
md3_max_objects = gr.Number(
label="Max Objects (for Object Detection only)",
value=10, minimum=1, maximum=50, step=1, visible=True
)
md3_generate_btn = gr.Button(value="✨ Generate", variant="primary")
with gr.Column(scale=1):
md3_output_image = gr.Image(type="pil", label="Result", height=400)
md3_output_textbox = gr.Textbox(label="Model Response", lines=10, show_copy_button=True)
md3_output_time = gr.Markdown()
gr.Examples(
examples=[
["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG", "Object Detection", "candy", 5],
["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG", "Point Detection", "candy", 5],
["https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg", "Caption", "", 5],
["https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg", "Visual Question Answering", "how well does moondream 3 perform in chartvqa?", 5],
],
inputs=[md3_image_input, md3_task_type, md3_prompt_input, md3_max_objects],
label="Click an example to populate inputs"
)
with gr.TabItem("📹 Video Object Tracking"):
with gr.Row():
with gr.Column(scale=1):
md3_video_input = gr.Video(label="Upload a video file", height=400)
md3_video_prompt = gr.Textbox(label="Object to track", placeholder="e.g., 'person', 'car', 'ball'", value="person")
md3_detection_interval = gr.Slider(
minimum=5, maximum=30, value=15, step=1, label="Detection Interval (frames)",
info="Run detection every N frames (lower is slower but more accurate)."
)
md3_process_video_btn = gr.Button(value="🎥 Process Video", variant="primary")
with gr.Column(scale=1):
md3_output_video = gr.Video(label="Tracked Video Result", height=400)
md3_video_summary = gr.Textbox(label="Processing Summary", lines=8, show_copy_button=True)
gr.Examples(
examples=[["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4", "snowboarder", 15]],
inputs=[md3_video_input, md3_video_prompt, md3_detection_interval],
label="Click an example to populate inputs"
)
# --- Event Handlers ---
# Document Tab
process_btn.click(
fn=process_document_stream,
inputs=[model_choice, image_input_doc, prompt_input_doc, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output_stream]
)
clear_btn.click(lambda: (None, "", ""), outputs=[image_input_doc, prompt_input_doc, output_stream])
# Moondream3 Tab
def update_max_objects_visibility(task):
return gr.update(visible=(task == "Object Detection"))
md3_task_type.change(fn=update_max_objects_visibility, inputs=[md3_task_type], outputs=[md3_max_objects])
md3_generate_btn.click(
fn=detect_objects_md3,
inputs=[md3_image_input, md3_prompt_input, md3_task_type, md3_max_objects],
outputs=[md3_output_image, md3_output_textbox, md3_output_time]
)
md3_process_video_btn.click(
fn=process_video_md3,
inputs=[md3_video_input, md3_video_prompt, md3_detection_interval],
outputs=[md3_output_video, md3_video_summary]
)
return demo
if __name__ == "__main__":
# Create some example images if they don't exist
if not os.path.exists("examples"):
os.makedirs("examples")
try:
# Dummy image creation for examples to prevent errors if not present
Image.new('RGB', (200, 100), color = 'red').save('examples/1.png')
Image.new('RGB', (200, 100), color = 'green').save('examples/2.png')
Image.new('RGB', (200, 100), color = 'blue').save('examples/3.png')
except Exception as e:
print(f"Could not create dummy example images: {e}")
demo = create_gradio_interface()
demo.queue(max_size=20).launch(share=True, show_error=True) |