File size: 22,301 Bytes
81d2b64
 
 
d69431d
81d2b64
 
 
 
d69431d
81d2b64
 
 
 
063e299
81d2b64
d69431d
063e299
d69431d
 
063e299
81d2b64
 
d69431d
 
 
81d2b64
d69431d
 
 
 
81d2b64
 
 
 
063e299
81d2b64
 
 
063e299
 
81d2b64
063e299
 
81d2b64
063e299
 
81d2b64
 
063e299
d69431d
063e299
d69431d
 
 
 
 
 
 
063e299
d69431d
fdfdc4e
063e299
fdfdc4e
d69431d
e4cff5c
d69431d
 
 
 
063e299
 
d69431d
 
063e299
d69431d
 
 
 
 
 
 
063e299
d69431d
063e299
 
81d2b64
 
 
d69431d
81d2b64
 
 
063e299
 
d69431d
 
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
d69431d
 
063e299
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
 
063e299
d69431d
81d2b64
 
 
 
 
 
 
 
 
 
d69431d
063e299
d69431d
81d2b64
063e299
d69431d
81d2b64
063e299
d69431d
 
063e299
 
 
 
 
 
 
81d2b64
063e299
81d2b64
 
063e299
81d2b64
 
 
d69431d
81d2b64
d69431d
81d2b64
 
d69431d
 
 
 
 
063e299
d69431d
81d2b64
 
d69431d
81d2b64
d69431d
 
 
063e299
 
d69431d
063e299
81d2b64
 
 
 
 
 
 
 
 
 
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2b64
 
063e299
 
81d2b64
063e299
 
 
 
 
 
 
81d2b64
063e299
 
 
 
81d2b64
063e299
 
 
 
81d2b64
063e299
81d2b64
d69431d
 
063e299
 
 
 
 
 
 
 
 
 
 
81d2b64
063e299
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile
import cv2

import gradio as gr
import numpy as np
import torch
from PIL import Image
import supervision as sv


from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    AutoModelForCausalLM,
    AutoProcessor,
    TextIteratorStreamer,
)

# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("--- System Information ---")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("CUDA available:", torch.cuda.is_available())
print("CUDA device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("Current device:", torch.cuda.current_device())
    print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
print("--------------------------")


# --- Model Loading ---

# Load Camel-Doc-OCR-062825
print("Loading Camel-Doc-OCR-062825...")
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()
print("Camel-Doc-OCR-062825 loaded.")

# MinerU2.5-2509
print("Loading MinerU2.5-2509...")
MODEL_ID_T = "opendatalab/MinerU2.5-2509-1.2B"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()
print("MinerU2.5-2509 loaded.")


# Load Video-MTR
print("Loading Video-MTR...")
MODEL_ID_S = "Phoebe13/Video-MTR"
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_S,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()
print("Video-MTR loaded.")

# Load moondream3
print("Loading moondream3-preview...")
MODEL_ID_MD3 = "moondream/moondream3-preview"
model_md3 = AutoModelForCausalLM.from_pretrained(
    MODEL_ID_MD3,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    device_map={"": "cuda"},
)
model_md3.compile()
print("moondream3-preview loaded and compiled.")


# --- Moondream3 Utility Functions ---

def create_annotated_image(image, detection_result, object_name="Object"):
    if not isinstance(detection_result, dict) or "objects" not in detection_result:
        return image
    
    original_width, original_height = image.size
    annotated_image = np.array(image.convert("RGB"))
  
    bboxes = []
    labels = []
    
    for i, obj in enumerate(detection_result["objects"]):
        x_min = int(obj["x_min"] * original_width)
        y_min = int(obj["y_min"] * original_height)
        x_max = int(obj["x_max"] * original_width)
        y_max = int(obj["y_max"] * original_height)
        
        x_min = max(0, min(x_min, original_width))
        y_min = max(0, min(y_min, original_height))
        x_max = max(0, min(x_max, original_width))
        y_max = max(0, min(y_max, original_height))
        
        if x_max > x_min and y_max > y_min:
            bboxes.append([x_min, y_min, x_max, y_max])
            labels.append(f"{object_name} {i+1}")
    
    if not bboxes:
        return image
        
    detections = sv.Detections(
        xyxy=np.array(bboxes, dtype=np.float32),
        class_id=np.arange(len(bboxes))
    )
    
    bounding_box_annotator = sv.BoxAnnotator(
        thickness=3,
        color_lookup=sv.ColorLookup.INDEX
    )
    label_annotator = sv.LabelAnnotator(
        text_thickness=2,
        text_scale=0.6,
        color_lookup=sv.ColorLookup.INDEX
    )
    
    annotated_image = bounding_box_annotator.annotate(
        scene=annotated_image, detections=detections
    )
    annotated_image = label_annotator.annotate(
        scene=annotated_image, detections=detections, labels=labels
    )
    
    return Image.fromarray(annotated_image)


@spaces.GPU()
def process_video_with_tracking(video_path, prompt, detection_interval=3):
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    byte_tracker = sv.ByteTrack()
    
    temp_dir = tempfile.mkdtemp()
    output_path = os.path.join(temp_dir, "tracked_video.mp4")
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    
    frame_count = 0
    detection_count = 0
    
    try:
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            
            run_detection = (frame_count % detection_interval == 0)
            detections = sv.Detections.empty()
            
            if run_detection:
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                pil_image = Image.fromarray(frame_rgb)
                
                result = model_md3.detect(pil_image, prompt)
                detection_count += 1
                
                if "objects" in result and result["objects"]:
                    bboxes = []
                    confidences = []
                    
                    for obj in result["objects"]:
                        x_min = max(0.0, min(1.0, obj["x_min"])) * width
                        y_min = max(0.0, min(1.0, obj["y_min"])) * height
                        x_max = max(0.0, min(1.0, obj["x_max"])) * width
                        y_max = max(0.0, min(1.0, obj["y_max"])) * height
                        
                        if x_max > x_min and y_max > y_min:
                            bboxes.append([x_min, y_min, x_max, y_max])
                            confidences.append(0.8)
                    
                    if bboxes:  
                        detections = sv.Detections(
                            xyxy=np.array(bboxes, dtype=np.float32),
                            confidence=np.array(confidences, dtype=np.float32),
                            class_id=np.zeros(len(bboxes), dtype=int)
                        )
            
            detections = byte_tracker.update_with_detections(detections)

            if len(detections) > 0:
                box_annotator = sv.BoxAnnotator(thickness=3, color_lookup=sv.ColorLookup.TRACK)
                label_annotator = sv.LabelAnnotator(text_scale=0.6, text_thickness=2, color_lookup=sv.ColorLookup.TRACK)
                
                labels = [f"{prompt} ID: {tracker_id}" for tracker_id in detections.tracker_id]
                
                frame = box_annotator.annotate(scene=frame, detections=detections)
                frame = label_annotator.annotate(scene=frame, detections=detections, labels=labels)
            
            out.write(frame)
            frame_count += 1
            
            if frame_count % 30 == 0:
                progress = (frame_count / total_frames) * 100
                print(f"Processing: {progress:.1f}% ({frame_count}/{total_frames}) - Detections: {detection_count}")
    
    finally:
        cap.release()
        out.release()
    
    summary = f"""Video processing complete:
- Total frames processed: {frame_count}
- Detection runs: {detection_count} (every {detection_interval} frames)
- Objects tracked: {prompt}
- Processing speed: ~{detection_count/frame_count*100:.1f}% detection rate for optimization"""
    
    return output_path, summary

def create_point_annotated_image(image, point_result):
    if not isinstance(point_result, dict) or "points" not in point_result:
        return image
    
    original_width, original_height = image.size
    annotated_image = np.array(image.convert("RGB"))
    
    points = []
    for point in point_result["points"]:
        x = int(point["x"] * original_width)
        y = int(point["y"] * original_height)
        points.append([x, y])
    
    if points:
        points_array = np.array(points).reshape(1, -1, 2)
        key_points = sv.KeyPoints(xy=points_array)
        vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
        annotated_image = vertex_annotator.annotate(
            scene=annotated_image, key_points=key_points
        )
    
    return Image.fromarray(annotated_image)

@spaces.GPU()
def detect_objects_md3(image, prompt, task_type, max_objects):
    STANDARD_SIZE = (1024, 1024)
    if image is None:
        raise gr.Error("Please upload an image.")
    image.thumbnail(STANDARD_SIZE)
    
    t0 = time.perf_counter()
    
    if task_type == "Object Detection":
        settings = {"max_objects": max_objects} if max_objects > 0 else {}
        result = model_md3.detect(image, prompt, settings=settings)
        annotated_image = create_annotated_image(image, result, prompt)
    elif task_type == "Point Detection":
        result = model_md3.point(image, prompt)
        annotated_image = create_point_annotated_image(image, result)
    elif task_type == "Caption":
        result = model_md3.caption(image, length="normal")
        annotated_image = image  
    else:  
        result = model_md3.query(image=image, question=prompt, reasoning=True)
        annotated_image = image  
          
    elapsed_ms = (time.perf_counter() - t0) * 1_000
    
    if isinstance(result, dict):
        if "objects" in result:
          output_text = f"Found {len(result['objects'])} objects:\n"
          for i, obj in enumerate(result['objects'], 1):
              output_text += f"\n{i}. Bounding box: ({obj['x_min']:.3f}, {obj['y_min']:.3f}, {obj['x_max']:.3f}, {obj['y_max']:.3f})"
        elif "points" in result:
            output_text = f"Found {len(result['points'])} points:\n"
            for i, point in enumerate(result['points'], 1):
                output_text += f"\n{i}. Point: ({point['x']:.3f}, {point['y']:.3f})"
        elif "caption" in result:
            output_text = result['caption']
        elif "answer" in result:
            output_text = f"Reasoning: {result.get('reasoning', 'N/A')}\n\nAnswer: {result['answer']}"
        else:
            output_text = json.dumps(result, indent=2)
    else:
        output_text = str(result)
    
    timing_text = f"Inference time: {elapsed_ms:.0f} ms"
    
    return annotated_image, output_text, timing_text

def process_video_md3(video_file, prompt, detection_interval):
    if video_file is None:
        return None, "Please upload a video file"
    output_path, summary = process_video_with_tracking(video_file, prompt, detection_interval)
    return output_path, summary


# --- Core Application Logic (for other models) ---
@spaces.GPU
def process_document_stream(
    model_name: str, 
    image: Image.Image, 
    prompt_input: str, 
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repetition_penalty: float
):
    """
    Main generator function for models other than Moondream3.
    """
    if image is None:
        yield "Please upload an image."
        return
    if not prompt_input or not prompt_input.strip():
        yield "Please enter a prompt."
        return

    # Select processor and model based on dropdown choice
    if model_name == "Camel-Doc-OCR-062825 (OCR)":
        processor, model = processor_m, model_m
    elif model_name == "MinerU2.5-2509 (General)":
        processor, model = processor_t, model_t
    elif model_name == "Video-MTR (Video/Text)":
        processor, model = processor_s, model_s
    else:
        yield "Invalid model selected."
        return
            
    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_input}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
    
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    
    generation_kwargs = {
        **inputs, 
        "streamer": streamer, 
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "do_sample": True if temperature > 0 else False
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        # Clean up potential model-specific tokens
        buffer = buffer.replace("<|im_end|>", "").replace("</s>", "")
        time.sleep(0.01)
        yield buffer

# --- Gradio UI Definition ---
def create_gradio_interface():
    """Builds and returns the Gradio web interface."""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
    .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.Markdown("# Multimodal VLM v1.0 🚀")
        gr.Markdown("Explore the capabilities of various Vision Language Models for tasks like OCR, VQA, Object Detection, and Video Tracking.")

        with gr.Tabs():
            # --- TAB 1: Document and General VLMs ---
            with gr.TabItem("📄 Document & General VLM"):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("### 1. Configure Inputs")
                        model_choice = gr.Dropdown(
                            choices=["Camel-Doc-OCR-062825 (OCR)", "MinerU2.5-2509 (General)", "Video-MTR (Video/Text)"],
                            label="Select Model", value= "Camel-Doc-OCR-062825 (OCR)"
                        )
                        image_input_doc = gr.Image(label="Upload Image", type="pil", sources=['upload'])
                        prompt_input_doc = gr.Textbox(label="Query Input", placeholder="e.g., 'Transcribe the text in this document.'")
                        
                        with gr.Accordion("Advanced Generation Settings", open=False):
                            max_new_tokens = gr.Slider(minimum=256, maximum=4096, value=2048, step=128, label="Max New Tokens")
                            temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7)
                            top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, step=0.05, value=0.9)
                            top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=40)
                            repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)

                        process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"])
                        clear_btn = gr.Button("🗑️ Clear", variant="secondary")

                    with gr.Column(scale=2):
                        gr.Markdown("### 2. View Output")
                        output_stream = gr.Textbox(label="Model Output", interactive=False, lines=20, show_copy_button=True)
                
                gr.Examples(
                    examples=[
                        ["examples/1.png", "Transcribe this receipt."],
                        ["examples/2.png", "Extract the table from this document as markdown."],
                        ["examples/3.png", "What information is presented in this infographic?"],
                    ],
                    inputs=[image_input_doc, prompt_input_doc]
                )
            
            # --- TAB 2: Moondream3 Lab ---
            with gr.TabItem("🌝 Moondream3 Lab"):
                with gr.Tabs():
                    with gr.TabItem("🖼️ Image Processing"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                md3_image_input = gr.Image(label="Upload an image", type="pil", height=400)
                                md3_task_type = gr.Radio(
                                    choices=["Object Detection", "Point Detection", "Caption", "Visual Question Answering"],
                                    label="Task Type", value="Object Detection"
                                )
                                md3_prompt_input = gr.Textbox(
                                    label="Prompt (object to detect/question to ask)",
                                    placeholder="e.g., 'car', 'person', 'What's in this image?'", value="objects"
                                )
                                md3_max_objects = gr.Number(
                                    label="Max Objects (for Object Detection only)",
                                    value=10, minimum=1, maximum=50, step=1, visible=True
                                )
                                md3_generate_btn = gr.Button(value="✨ Generate", variant="primary")
                            with gr.Column(scale=1):
                                md3_output_image = gr.Image(type="pil", label="Result", height=400)
                                md3_output_textbox = gr.Textbox(label="Model Response", lines=10, show_copy_button=True)
                                md3_output_time = gr.Markdown()

                        gr.Examples(
                            examples=[
                                ["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG", "Object Detection", "candy", 5],
                                ["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG", "Point Detection", "candy", 5],
                                ["https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg", "Caption", "", 5],
                                ["https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg", "Visual Question Answering", "how well does moondream 3 perform in chartvqa?", 5],
                            ],
                            inputs=[md3_image_input, md3_task_type, md3_prompt_input, md3_max_objects],
                            label="Click an example to populate inputs"
                        )
                    
                    with gr.TabItem("📹 Video Object Tracking"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                md3_video_input = gr.Video(label="Upload a video file", height=400)
                                md3_video_prompt = gr.Textbox(label="Object to track", placeholder="e.g., 'person', 'car', 'ball'", value="person")
                                md3_detection_interval = gr.Slider(
                                    minimum=5, maximum=30, value=15, step=1, label="Detection Interval (frames)",
                                    info="Run detection every N frames (lower is slower but more accurate)."
                                )
                                md3_process_video_btn = gr.Button(value="🎥 Process Video", variant="primary")
                            with gr.Column(scale=1):
                                md3_output_video = gr.Video(label="Tracked Video Result", height=400)
                                md3_video_summary = gr.Textbox(label="Processing Summary", lines=8, show_copy_button=True)
                        gr.Examples(
                            examples=[["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4", "snowboarder", 15]],
                            inputs=[md3_video_input, md3_video_prompt, md3_detection_interval],
                            label="Click an example to populate inputs"
                        )

        # --- Event Handlers ---
        
        # Document Tab
        process_btn.click(
            fn=process_document_stream,
            inputs=[model_choice, image_input_doc, prompt_input_doc, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
            outputs=[output_stream]
        )
        clear_btn.click(lambda: (None, "", ""), outputs=[image_input_doc, prompt_input_doc, output_stream])

        # Moondream3 Tab
        def update_max_objects_visibility(task):
            return gr.update(visible=(task == "Object Detection"))
        
        md3_task_type.change(fn=update_max_objects_visibility, inputs=[md3_task_type], outputs=[md3_max_objects])
        
        md3_generate_btn.click(
            fn=detect_objects_md3,
            inputs=[md3_image_input, md3_prompt_input, md3_task_type, md3_max_objects],
            outputs=[md3_output_image, md3_output_textbox, md3_output_time]
        )
        md3_process_video_btn.click(
            fn=process_video_md3,
            inputs=[md3_video_input, md3_video_prompt, md3_detection_interval],
            outputs=[md3_output_video, md3_video_summary]
        )
        
    return demo

if __name__ == "__main__":
    # Create some example images if they don't exist
    if not os.path.exists("examples"):
        os.makedirs("examples")
    try:
        # Dummy image creation for examples to prevent errors if not present
        Image.new('RGB', (200, 100), color = 'red').save('examples/1.png')
        Image.new('RGB', (200, 100), color = 'green').save('examples/2.png')
        Image.new('RGB', (200, 100), color = 'blue').save('examples/3.png')
    except Exception as e:
        print(f"Could not create dummy example images: {e}")

    demo = create_gradio_interface()
    demo.queue(max_size=20).launch(share=True, show_error=True)