Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import time | |
| from threading import Thread | |
| import re | |
| from PIL import Image, ImageDraw | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load Lumian2-VLR-7B-Thinking | |
| MODEL_ID_Y = "prithivMLmods/Lumian2-VLR-7B-Thinking" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True) | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Y, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def parse_model_output(text: str): | |
| """ | |
| Parses the model output to extract the answer and bounding box coordinates. | |
| """ | |
| # Extract coordinates from the <think> block | |
| think_match = re.search(r"<think>(.*?)</think>", text, re.DOTALL) | |
| coordinates = [] | |
| if think_match: | |
| think_content = think_match.group(1) | |
| # Find all occurrences of (x, y) coordinates | |
| coords_raw = re.findall(r'\((\d+),\s*(\d+)\)', think_content) | |
| coordinates = [(int(x), int(y)) for x, y in coords_raw] | |
| # Extract the answer from the <answer> block | |
| answer_match = re.search(r"<answer>(.*?)</answer>", text, re.DOTALL) | |
| answer = answer_match.group(1).strip() if answer_match else text | |
| return answer, coordinates | |
| def draw_bounding_boxes(image: Image.Image, coordinates: list, box_size: int = 60, use_dotted_style: bool = False): | |
| """ | |
| Draws square bounding boxes on the image at the given coordinates. | |
| """ | |
| if not coordinates: | |
| return image | |
| img_with_boxes = image.copy() | |
| draw = ImageDraw.Draw(img_with_boxes, "RGBA") | |
| half_box = box_size // 2 | |
| for (x, y) in coordinates: | |
| # Define the bounding box corners | |
| x1 = x - half_box | |
| y1 = y - half_box | |
| x2 = x + half_box | |
| y2 = y + half_box | |
| if use_dotted_style: | |
| # "Dotted like seaborn" - a semi-transparent fill with a solid outline | |
| fill_color = (0, 100, 255, 60) # Light blue, semi-transparent | |
| outline_color = (0, 0, 255) # Solid blue | |
| draw.rectangle([x1, y1, x2, y2], fill=fill_color, outline=outline_color, width=2) | |
| else: | |
| # Default solid box | |
| outline_color = (255, 0, 0) # Red | |
| draw.rectangle([x1, y1, x2, y2], outline=outline_color, width=3) | |
| return img_with_boxes | |
| def generate_image(text: str, image: Image.Image, | |
| max_new_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| top_k: int, | |
| repetition_penalty: float, | |
| draw_boxes: bool, | |
| use_dotted_style: bool): | |
| """ | |
| Generates responses and draws bounding boxes based on model output. | |
| Yields raw text, markdown-formatted text, and the processed image. | |
| """ | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image.", None | |
| return | |
| # Yield the original image immediately for the output display | |
| yield "", "", image | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "do_sample": True | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| # During generation, yield text updates but keep the original image | |
| yield buffer, buffer, image | |
| # After generation is complete, parse the output and draw boxes | |
| final_answer, coordinates = parse_model_output(buffer) | |
| output_image = image | |
| if draw_boxes and coordinates: | |
| output_image = draw_bounding_boxes(image, coordinates, use_dotted_style=use_dotted_style) | |
| # Yield the final result with the processed image | |
| yield buffer, final_answer, output_image | |
| # Define examples for image inference | |
| image_examples = [ | |
| ["Explain the content in detail.", "images/D.jpg"], | |
| ["Explain the content (ocr).", "images/O.jpg"], | |
| ["What is the core meaning of the poem?", "images/S.jpg"], | |
| ["Provide a detailed caption for the image.", "images/A.jpg"], | |
| ["Explain the pie-chart in detail.", "images/2.jpg"], | |
| ["Jsonify Data.", "images/1.jpg"], | |
| ] | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| .canvas-output { | |
| border: 2px solid #4682B4; | |
| border-radius: 10px; | |
| padding: 20px; | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown("# **Lumian2-VLR-7B-Thinking Image Inference**") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("## Image Inference") | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Image") | |
| image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.Column(scale=2): | |
| gr.Markdown("## Output") | |
| with gr.Tabs(): | |
| with gr.TabItem("Image with Bounding Box"): | |
| image_output = gr.Image(label="Processed Image") | |
| with gr.TabItem("Raw Text"): | |
| output = gr.Textbox(label="Raw Model Output", interactive=False, lines=10) | |
| with gr.TabItem("Parsed Answer"): | |
| markdown_output = gr.Markdown(label="Parsed Answer") | |
| gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)") | |
| gr.Markdown( | |
| """> [Lumian2-VLR-7B-Thinking](https://huggingface.co/prithivMLmods/Lumian2-VLR-7B-Thinking): The Lumian2-VLR-7B-Thinking model is a high-fidelity vision-language reasoning (experimental model) system designed for fine-grained multimodal understanding. Built on Qwen2.5-VL-7B-Instruct, this model enhances image captioning, and document comprehension through explicit grounded reasoning. It produces structured reasoning traces aligned with visual coordinates, enabling explainable multimodal reasoning.""" | |
| ) | |
| with gr.Row(): | |
| draw_boxes_checkbox = gr.Checkbox(label="Draw Bounding Boxes", value=True) | |
| dotted_style_checkbox = gr.Checkbox(label="Use Dotted Style for Boxes", value=False) | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, draw_boxes_checkbox, dotted_style_checkbox], | |
| outputs=[output, markdown_output, image_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(share=True)``` |