Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,112 +1,89 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import time
|
| 3 |
-
import
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
import torch
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
import cv2
|
| 10 |
from transformers import (
|
| 11 |
Qwen2_5_VLForConditionalGeneration,
|
| 12 |
-
Qwen2VLForConditionalGeneration,
|
| 13 |
-
Glm4vForConditionalGeneration,
|
| 14 |
AutoProcessor,
|
| 15 |
TextIteratorStreamer,
|
| 16 |
)
|
| 17 |
-
from qwen_vl_utils import process_vision_info
|
| 18 |
|
| 19 |
# Constants for text generation
|
| 20 |
-
MAX_MAX_NEW_TOKENS =
|
| 21 |
-
DEFAULT_MAX_NEW_TOKENS =
|
| 22 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 23 |
|
| 24 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 25 |
|
| 26 |
-
# Load
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
trust_remote_code=True,
|
| 32 |
-
torch_dtype=torch.float16
|
| 33 |
-
).to(device).eval()
|
| 34 |
-
|
| 35 |
-
# Load Megalodon-OCR-Sync-0713
|
| 36 |
-
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
|
| 37 |
-
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
| 38 |
-
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 39 |
-
MODEL_ID_T,
|
| 40 |
trust_remote_code=True,
|
| 41 |
torch_dtype=torch.float16
|
| 42 |
).to(device).eval()
|
| 43 |
|
| 44 |
-
# Load Video-MTR
|
| 45 |
-
MODEL_ID_S = "Phoebe13/Video-MTR"
|
| 46 |
-
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
|
| 47 |
-
model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 48 |
-
MODEL_ID_S,
|
| 49 |
-
trust_remote_code=True,
|
| 50 |
-
torch_dtype=torch.float16
|
| 51 |
-
).to(device).eval()
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
def downsample_video(video_path):
|
| 63 |
-
"""
|
| 64 |
-
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
|
| 65 |
-
"""
|
| 66 |
-
vidcap = cv2.VideoCapture(video_path)
|
| 67 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 68 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 69 |
-
frames = []
|
| 70 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 71 |
-
for i in frame_indices:
|
| 72 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 73 |
-
success, image = vidcap.read()
|
| 74 |
-
if success:
|
| 75 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 76 |
-
pil_image = Image.fromarray(image)
|
| 77 |
-
timestamp = round(i / fps, 2)
|
| 78 |
-
frames.append((pil_image, timestamp))
|
| 79 |
-
vidcap.release()
|
| 80 |
-
return frames
|
| 81 |
|
| 82 |
-
@spaces.GPU
|
| 83 |
-
def generate_image(
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
| 89 |
"""
|
| 90 |
-
|
|
|
|
| 91 |
"""
|
| 92 |
-
if model_name == "Camel-Doc-OCR-062825":
|
| 93 |
-
processor = processor_m
|
| 94 |
-
model = model_m
|
| 95 |
-
elif model_name == "Megalodon-OCR-Sync-0713":
|
| 96 |
-
processor = processor_t
|
| 97 |
-
model = model_t
|
| 98 |
-
elif model_name == "Video-MTR":
|
| 99 |
-
processor = processor_s
|
| 100 |
-
model = model_s
|
| 101 |
-
elif model_name == "ViLaSR-7B":
|
| 102 |
-
processor = processor_y
|
| 103 |
-
model = model_y
|
| 104 |
-
else:
|
| 105 |
-
yield "Invalid model selected.", "Invalid model selected."
|
| 106 |
-
return
|
| 107 |
-
|
| 108 |
if image is None:
|
| 109 |
-
yield "Please upload an image.", "Please upload an image."
|
| 110 |
return
|
| 111 |
|
| 112 |
messages = [{
|
|
@@ -126,98 +103,38 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 126 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 127 |
).to(device)
|
| 128 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 129 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 130 |
-
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 131 |
-
thread.start()
|
| 132 |
-
buffer = ""
|
| 133 |
-
for new_text in streamer:
|
| 134 |
-
buffer += new_text
|
| 135 |
-
time.sleep(0.01)
|
| 136 |
-
yield buffer, buffer
|
| 137 |
-
|
| 138 |
-
@spaces.GPU
|
| 139 |
-
def generate_video(model_name: str, text: str, video_path: str,
|
| 140 |
-
max_new_tokens: int = 1024,
|
| 141 |
-
temperature: float = 0.6,
|
| 142 |
-
top_p: float = 0.9,
|
| 143 |
-
top_k: int = 50,
|
| 144 |
-
repetition_penalty: float = 1.2):
|
| 145 |
-
"""
|
| 146 |
-
Generate responses using the selected model for video input.
|
| 147 |
-
"""
|
| 148 |
-
if model_name == "Camel-Doc-OCR-062825":
|
| 149 |
-
processor = processor_m
|
| 150 |
-
model = model_m
|
| 151 |
-
elif model_name == "Megalodon-OCR-Sync-0713":
|
| 152 |
-
processor = processor_t
|
| 153 |
-
model = model_t
|
| 154 |
-
elif model_name == "Video-MTR":
|
| 155 |
-
processor = processor_s
|
| 156 |
-
model = model_s
|
| 157 |
-
elif model_name == "ViLaSR-7B":
|
| 158 |
-
processor = processor_y
|
| 159 |
-
model = model_y
|
| 160 |
-
else:
|
| 161 |
-
yield "Invalid model selected.", "Invalid model selected."
|
| 162 |
-
return
|
| 163 |
-
|
| 164 |
-
if video_path is None:
|
| 165 |
-
yield "Please upload a video.", "Please upload a video."
|
| 166 |
-
return
|
| 167 |
-
|
| 168 |
-
frames = downsample_video(video_path)
|
| 169 |
-
messages = [
|
| 170 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 171 |
-
{"role": "user", "content": [{"type": "text", "text": text}]}
|
| 172 |
-
]
|
| 173 |
-
for frame in frames:
|
| 174 |
-
image, timestamp = frame
|
| 175 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 176 |
-
messages[1]["content"].append({"type": "image", "image": image})
|
| 177 |
-
inputs = processor.apply_chat_template(
|
| 178 |
-
messages,
|
| 179 |
-
tokenize=True,
|
| 180 |
-
add_generation_prompt=True,
|
| 181 |
-
return_dict=True,
|
| 182 |
-
return_tensors="pt",
|
| 183 |
-
truncation=False,
|
| 184 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 185 |
-
).to(device)
|
| 186 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 187 |
generation_kwargs = {
|
| 188 |
**inputs,
|
| 189 |
"streamer": streamer,
|
| 190 |
"max_new_tokens": max_new_tokens,
|
| 191 |
-
"do_sample": True,
|
| 192 |
"temperature": temperature,
|
| 193 |
"top_p": top_p,
|
| 194 |
"top_k": top_k,
|
| 195 |
"repetition_penalty": repetition_penalty,
|
|
|
|
| 196 |
}
|
| 197 |
-
thread =
|
| 198 |
thread.start()
|
| 199 |
buffer = ""
|
|
|
|
| 200 |
for new_text in streamer:
|
| 201 |
buffer += new_text
|
| 202 |
-
|
|
|
|
| 203 |
time.sleep(0.01)
|
| 204 |
-
yield buffer, buffer
|
| 205 |
|
| 206 |
-
# Define examples for image and video inference
|
| 207 |
-
image_examples = [
|
| 208 |
-
["convert this page to doc [text] precisely for markdown.", "images/1.png"],
|
| 209 |
-
["explain the movie shot in detail.", "images/5.jpg"],
|
| 210 |
-
["convert this page to doc [table] precisely for markdown.", "images/2.png"],
|
| 211 |
-
["explain the movie shot in detail.", "images/3.png"],
|
| 212 |
-
["fill the correct numbers.", "images/4.png"]
|
| 213 |
-
]
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
]
|
| 219 |
|
| 220 |
-
# Updated CSS with model choice highlighting
|
| 221 |
css = """
|
| 222 |
.submit-btn {
|
| 223 |
background-color: #2980b9 !important;
|
|
@@ -235,67 +152,54 @@ css = """
|
|
| 235 |
|
| 236 |
# Create the Gradio Interface
|
| 237 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 238 |
-
gr.Markdown("# **
|
| 239 |
with gr.Row():
|
| 240 |
with gr.Column():
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
)
|
| 250 |
-
with gr.TabItem("Video Inference"):
|
| 251 |
-
video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...")
|
| 252 |
-
video_upload = gr.Video(label="Video")
|
| 253 |
-
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 254 |
-
gr.Examples(
|
| 255 |
-
examples=video_examples,
|
| 256 |
-
inputs=[video_query, video_upload]
|
| 257 |
-
)
|
| 258 |
with gr.Accordion("Advanced options", open=False):
|
| 259 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 260 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 261 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 262 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 263 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
with gr.Column():
|
| 265 |
with gr.Column(elem_classes="canvas-output"):
|
| 266 |
gr.Markdown("## Output")
|
| 267 |
-
output = gr.Textbox(label="Raw Output
|
|
|
|
| 268 |
with gr.Accordion("(Result.md)", open=False):
|
| 269 |
-
markdown_output = gr.Markdown(
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
)
|
| 275 |
-
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLM-v1.0/discussions)")
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
gr.Markdown("> ✋ ViLaSR-7B - demo only supports text-only reasoning, which doesn't reflect the full behavior of the model and may underrepresent its capabilities.")
|
| 283 |
-
gr.Markdown("> ⚠️ Note: Models in this space may not perform well on video inference tasks.")
|
| 284 |
-
# Define the submit button actions
|
| 285 |
-
image_submit.click(fn=generate_image,
|
| 286 |
-
inputs=[
|
| 287 |
-
model_choice, image_query, image_upload,
|
| 288 |
-
max_new_tokens, temperature, top_p, top_k,
|
| 289 |
-
repetition_penalty
|
| 290 |
-
],
|
| 291 |
-
outputs=[output, markdown_output])
|
| 292 |
-
video_submit.click(fn=generate_video,
|
| 293 |
-
inputs=[
|
| 294 |
-
model_choice, video_query, video_upload,
|
| 295 |
-
max_new_tokens, temperature, top_p, top_k,
|
| 296 |
-
repetition_penalty
|
| 297 |
-
],
|
| 298 |
-
outputs=[output, markdown_output])
|
| 299 |
|
| 300 |
if __name__ == "__main__":
|
| 301 |
-
demo.queue(max_size=
|
|
|
|
| 1 |
import os
|
| 2 |
+
import re
|
| 3 |
import time
|
| 4 |
+
from threading import Thread
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
+
|
|
|
|
| 11 |
from transformers import (
|
| 12 |
Qwen2_5_VLForConditionalGeneration,
|
|
|
|
|
|
|
| 13 |
AutoProcessor,
|
| 14 |
TextIteratorStreamer,
|
| 15 |
)
|
|
|
|
| 16 |
|
| 17 |
# Constants for text generation
|
| 18 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 19 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 20 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 21 |
|
| 22 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 23 |
|
| 24 |
+
# Load Lumian2-VLR-7B-Thinking
|
| 25 |
+
MODEL_ID_Y = "prithivMLmods/Lumian2-VLR-7B-Thinking"
|
| 26 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
|
| 27 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 28 |
+
MODEL_ID_Y,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
trust_remote_code=True,
|
| 30 |
torch_dtype=torch.float16
|
| 31 |
).to(device).eval()
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
def extract_coordinates(text: str):
|
| 35 |
+
"""Extract all (x, y) coordinates from model output text."""
|
| 36 |
+
pattern = r"\((\d+),\s*(\d+)\)"
|
| 37 |
+
coords = re.findall(pattern, text)
|
| 38 |
+
return [(int(x), int(y)) for x, y in coords]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def draw_boxes(image: Image.Image, coords, box_type="solid"):
|
| 42 |
+
"""Draw bounding boxes on the image."""
|
| 43 |
+
img_copy = image.copy()
|
| 44 |
+
draw = ImageDraw.Draw(img_copy)
|
| 45 |
+
|
| 46 |
+
side = 50 # square size
|
| 47 |
+
for (x, y) in coords:
|
| 48 |
+
box = [(x - side//2, y - side//2), (x + side//2, y + side//2)]
|
| 49 |
+
if box_type == "solid":
|
| 50 |
+
draw.rectangle(box, outline="red", width=3)
|
| 51 |
+
elif box_type == "dotted":
|
| 52 |
+
# Draw dotted (dashed) rectangle
|
| 53 |
+
dash_len = 5
|
| 54 |
+
x1, y1 = box[0]
|
| 55 |
+
x2, y2 = box[1]
|
| 56 |
+
|
| 57 |
+
# Top edge
|
| 58 |
+
for i in range(x1, x2, dash_len*2):
|
| 59 |
+
draw.line([(i, y1), (min(i+dash_len, x2), y1)], fill="blue", width=2)
|
| 60 |
+
# Bottom edge
|
| 61 |
+
for i in range(x1, x2, dash_len*2):
|
| 62 |
+
draw.line([(i, y2), (min(i+dash_len, x2), y2)], fill="blue", width=2)
|
| 63 |
+
# Left edge
|
| 64 |
+
for i in range(y1, y2, dash_len*2):
|
| 65 |
+
draw.line([(x1, i), (x1, min(i+dash_len, y2))], fill="blue", width=2)
|
| 66 |
+
# Right edge
|
| 67 |
+
for i in range(y1, y2, dash_len*2):
|
| 68 |
+
draw.line([(x2, i), (x2, min(i+dash_len, y2))], fill="blue", width=2)
|
| 69 |
+
|
| 70 |
+
return img_copy
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
@spaces.GPU
|
| 74 |
+
def generate_image(text: str, image: Image.Image,
|
| 75 |
+
max_new_tokens: int = 1024,
|
| 76 |
+
temperature: float = 0.6,
|
| 77 |
+
top_p: float = 0.9,
|
| 78 |
+
top_k: int = 50,
|
| 79 |
+
repetition_penalty: float = 1.2,
|
| 80 |
+
box_type: str = "solid"):
|
| 81 |
"""
|
| 82 |
+
Generates responses using the Lumian2-VLR-7B-Thinking model for image input.
|
| 83 |
+
Yields raw text, Markdown-formatted text, and annotated image with bounding boxes.
|
| 84 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
if image is None:
|
| 86 |
+
yield "Please upload an image.", "Please upload an image.", None
|
| 87 |
return
|
| 88 |
|
| 89 |
messages = [{
|
|
|
|
| 103 |
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 104 |
).to(device)
|
| 105 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
generation_kwargs = {
|
| 107 |
**inputs,
|
| 108 |
"streamer": streamer,
|
| 109 |
"max_new_tokens": max_new_tokens,
|
|
|
|
| 110 |
"temperature": temperature,
|
| 111 |
"top_p": top_p,
|
| 112 |
"top_k": top_k,
|
| 113 |
"repetition_penalty": repetition_penalty,
|
| 114 |
+
"do_sample": True
|
| 115 |
}
|
| 116 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 117 |
thread.start()
|
| 118 |
buffer = ""
|
| 119 |
+
coords = []
|
| 120 |
for new_text in streamer:
|
| 121 |
buffer += new_text
|
| 122 |
+
coords = extract_coordinates(buffer)
|
| 123 |
+
annotated_image = draw_boxes(image, coords, box_type) if coords else None
|
| 124 |
time.sleep(0.01)
|
| 125 |
+
yield buffer, buffer, annotated_image
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Define examples for image inference
|
| 129 |
+
image_examples = [
|
| 130 |
+
["Explain the content in detail.", "images/D.jpg"],
|
| 131 |
+
["Explain the content (ocr).", "images/O.jpg"],
|
| 132 |
+
["What is the core meaning of the poem?", "images/S.jpg"],
|
| 133 |
+
["Provide a detailed caption for the image.", "images/A.jpg"],
|
| 134 |
+
["Explain the pie-chart in detail.", "images/2.jpg"],
|
| 135 |
+
["Jsonify Data.", "images/1.jpg"],
|
| 136 |
]
|
| 137 |
|
|
|
|
| 138 |
css = """
|
| 139 |
.submit-btn {
|
| 140 |
background-color: #2980b9 !important;
|
|
|
|
| 152 |
|
| 153 |
# Create the Gradio Interface
|
| 154 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 155 |
+
gr.Markdown("# **Lumian2-VLR-7B-Thinking Image Inference**")
|
| 156 |
with gr.Row():
|
| 157 |
with gr.Column():
|
| 158 |
+
gr.Markdown("## Image Inference")
|
| 159 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 160 |
+
image_upload = gr.Image(type="pil", label="Image")
|
| 161 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 162 |
+
gr.Examples(
|
| 163 |
+
examples=image_examples,
|
| 164 |
+
inputs=[image_query, image_upload]
|
| 165 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
with gr.Accordion("Advanced options", open=False):
|
| 167 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 168 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 169 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 170 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 171 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 172 |
+
|
| 173 |
+
# New options for bounding box visualization
|
| 174 |
+
box_type = gr.Radio(
|
| 175 |
+
choices=["solid", "dotted"],
|
| 176 |
+
value="solid",
|
| 177 |
+
label="Bounding Box Style"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
with gr.Column():
|
| 181 |
with gr.Column(elem_classes="canvas-output"):
|
| 182 |
gr.Markdown("## Output")
|
| 183 |
+
output = gr.Textbox(label="Raw Output", interactive=False, lines=3, scale=2)
|
| 184 |
+
|
| 185 |
with gr.Accordion("(Result.md)", open=False):
|
| 186 |
+
markdown_output = gr.Markdown()
|
| 187 |
+
|
| 188 |
+
annotated_output = gr.Image(label="Annotated Image with Bounding Boxes")
|
| 189 |
+
|
| 190 |
+
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
|
| 191 |
+
|
| 192 |
+
gr.Markdown(
|
| 193 |
+
"""
|
| 194 |
+
> [Lumian2-VLR-7B-Thinking](https://huggingface.co/prithivMLmods/Lumian2-VLR-7B-Thinking): The Lumian2-VLR-7B-Thinking model is a high-fidelity vision-language reasoning (experimental model) system designed for fine-grained multimodal understanding. Built on Qwen2.5-VL-7B-Instruct, this model enhances image captioning, and document comprehension through explicit grounded reasoning. It produces structured reasoning traces aligned with visual coordinates, enabling explainable multimodal reasoning.
|
| 195 |
+
"""
|
| 196 |
)
|
|
|
|
| 197 |
|
| 198 |
+
image_submit.click(
|
| 199 |
+
fn=generate_image,
|
| 200 |
+
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, box_type],
|
| 201 |
+
outputs=[output, markdown_output, annotated_output]
|
| 202 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
if __name__ == "__main__":
|
| 205 |
+
demo.queue(max_size=50).launch(share=True)
|