Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,225 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import time
|
| 3 |
-
from threading import Thread
|
| 4 |
-
import re
|
| 5 |
-
from PIL import Image, ImageDraw
|
| 6 |
-
|
| 7 |
-
import gradio as gr
|
| 8 |
-
import spaces
|
| 9 |
-
import torch
|
| 10 |
-
|
| 11 |
-
from transformers import (
|
| 12 |
-
Qwen2_5_VLForConditionalGeneration,
|
| 13 |
-
AutoProcessor,
|
| 14 |
-
TextIteratorStreamer,
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
# Constants for text generation
|
| 18 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 19 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 20 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 21 |
-
|
| 22 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 23 |
-
|
| 24 |
-
# Load Lumian2-VLR-7B-Thinking
|
| 25 |
-
MODEL_ID_Y = "prithivMLmods/Lumian2-VLR-7B-Thinking"
|
| 26 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
|
| 27 |
-
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 28 |
-
MODEL_ID_Y,
|
| 29 |
-
trust_remote_code=True,
|
| 30 |
-
torch_dtype=torch.float16
|
| 31 |
-
).to(device).eval()
|
| 32 |
-
|
| 33 |
-
def parse_model_output(text: str):
|
| 34 |
-
"""
|
| 35 |
-
Parses the model output to extract the answer and bounding box coordinates.
|
| 36 |
-
"""
|
| 37 |
-
# Extract coordinates from the <think> block
|
| 38 |
-
think_match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
| 39 |
-
coordinates = []
|
| 40 |
-
if think_match:
|
| 41 |
-
think_content = think_match.group(1)
|
| 42 |
-
# Find all occurrences of (x, y) coordinates
|
| 43 |
-
coords_raw = re.findall(r'\((\d+),\s*(\d+)\)', think_content)
|
| 44 |
-
coordinates = [(int(x), int(y)) for x, y in coords_raw]
|
| 45 |
-
|
| 46 |
-
# Extract the answer from the <answer> block
|
| 47 |
-
answer_match = re.search(r"<answer>(.*?)</answer>", text, re.DOTALL)
|
| 48 |
-
answer = answer_match.group(1).strip() if answer_match else text
|
| 49 |
-
|
| 50 |
-
return answer, coordinates
|
| 51 |
-
|
| 52 |
-
def draw_bounding_boxes(image: Image.Image, coordinates: list, box_size: int = 60, use_dotted_style: bool = False):
|
| 53 |
-
"""
|
| 54 |
-
Draws square bounding boxes on the image at the given coordinates.
|
| 55 |
-
"""
|
| 56 |
-
if not coordinates:
|
| 57 |
-
return image
|
| 58 |
-
|
| 59 |
-
img_with_boxes = image.copy()
|
| 60 |
-
draw = ImageDraw.Draw(img_with_boxes, "RGBA")
|
| 61 |
-
|
| 62 |
-
half_box = box_size // 2
|
| 63 |
-
|
| 64 |
-
for (x, y) in coordinates:
|
| 65 |
-
# Define the bounding box corners
|
| 66 |
-
x1 = x - half_box
|
| 67 |
-
y1 = y - half_box
|
| 68 |
-
x2 = x + half_box
|
| 69 |
-
y2 = y + half_box
|
| 70 |
-
|
| 71 |
-
if use_dotted_style:
|
| 72 |
-
# "Dotted like seaborn" - a semi-transparent fill with a solid outline
|
| 73 |
-
fill_color = (0, 100, 255, 60) # Light blue, semi-transparent
|
| 74 |
-
outline_color = (0, 0, 255) # Solid blue
|
| 75 |
-
draw.rectangle([x1, y1, x2, y2], fill=fill_color, outline=outline_color, width=2)
|
| 76 |
-
else:
|
| 77 |
-
# Default solid box
|
| 78 |
-
outline_color = (255, 0, 0) # Red
|
| 79 |
-
draw.rectangle([x1, y1, x2, y2], outline=outline_color, width=3)
|
| 80 |
-
|
| 81 |
-
return img_with_boxes
|
| 82 |
-
|
| 83 |
-
@spaces.GPU
|
| 84 |
-
def generate_image(text: str, image: Image.Image,
|
| 85 |
-
max_new_tokens: int,
|
| 86 |
-
temperature: float,
|
| 87 |
-
top_p: float,
|
| 88 |
-
top_k: int,
|
| 89 |
-
repetition_penalty: float,
|
| 90 |
-
draw_boxes: bool,
|
| 91 |
-
use_dotted_style: bool):
|
| 92 |
-
"""
|
| 93 |
-
Generates responses and draws bounding boxes based on model output.
|
| 94 |
-
Yields raw text, markdown-formatted text, and the processed image.
|
| 95 |
-
"""
|
| 96 |
-
if image is None:
|
| 97 |
-
yield "Please upload an image.", "Please upload an image.", None
|
| 98 |
-
return
|
| 99 |
-
|
| 100 |
-
# Yield the original image immediately for the output display
|
| 101 |
-
yield "", "", image
|
| 102 |
-
|
| 103 |
-
messages = [{
|
| 104 |
-
"role": "user",
|
| 105 |
-
"content": [
|
| 106 |
-
{"type": "image", "image": image},
|
| 107 |
-
{"type": "text", "text": text},
|
| 108 |
-
]
|
| 109 |
-
}]
|
| 110 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 111 |
-
inputs = processor(
|
| 112 |
-
text=[prompt_full],
|
| 113 |
-
images=[image],
|
| 114 |
-
return_tensors="pt",
|
| 115 |
-
padding=True,
|
| 116 |
-
truncation=False,
|
| 117 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 118 |
-
).to(device)
|
| 119 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 120 |
-
generation_kwargs = {
|
| 121 |
-
**inputs,
|
| 122 |
-
"streamer": streamer,
|
| 123 |
-
"max_new_tokens": max_new_tokens,
|
| 124 |
-
"temperature": temperature,
|
| 125 |
-
"top_p": top_p,
|
| 126 |
-
"top_k": top_k,
|
| 127 |
-
"repetition_penalty": repetition_penalty,
|
| 128 |
-
"do_sample": True
|
| 129 |
-
}
|
| 130 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 131 |
-
thread.start()
|
| 132 |
-
|
| 133 |
-
buffer = ""
|
| 134 |
-
for new_text in streamer:
|
| 135 |
-
buffer += new_text
|
| 136 |
-
time.sleep(0.01)
|
| 137 |
-
# During generation, yield text updates but keep the original image
|
| 138 |
-
yield buffer, buffer, image
|
| 139 |
-
|
| 140 |
-
# After generation is complete, parse the output and draw boxes
|
| 141 |
-
final_answer, coordinates = parse_model_output(buffer)
|
| 142 |
-
|
| 143 |
-
output_image = image
|
| 144 |
-
if draw_boxes and coordinates:
|
| 145 |
-
output_image = draw_bounding_boxes(image, coordinates, use_dotted_style=use_dotted_style)
|
| 146 |
-
|
| 147 |
-
# Yield the final result with the processed image
|
| 148 |
-
yield buffer, final_answer, output_image
|
| 149 |
-
|
| 150 |
-
# Define examples for image inference
|
| 151 |
-
image_examples = [
|
| 152 |
-
["Explain the content in detail.", "images/D.jpg"],
|
| 153 |
-
["Explain the content (ocr).", "images/O.jpg"],
|
| 154 |
-
["What is the core meaning of the poem?", "images/S.jpg"],
|
| 155 |
-
["Provide a detailed caption for the image.", "images/A.jpg"],
|
| 156 |
-
["Explain the pie-chart in detail.", "images/2.jpg"],
|
| 157 |
-
["Jsonify Data.", "images/1.jpg"],
|
| 158 |
-
]
|
| 159 |
-
|
| 160 |
-
css = """
|
| 161 |
-
.submit-btn {
|
| 162 |
-
background-color: #2980b9 !important;
|
| 163 |
-
color: white !important;
|
| 164 |
-
}
|
| 165 |
-
.submit-btn:hover {
|
| 166 |
-
background-color: #3498db !important;
|
| 167 |
-
}
|
| 168 |
-
.canvas-output {
|
| 169 |
-
border: 2px solid #4682B4;
|
| 170 |
-
border-radius: 10px;
|
| 171 |
-
padding: 20px;
|
| 172 |
-
}
|
| 173 |
-
"""
|
| 174 |
-
|
| 175 |
-
# Create the Gradio Interface
|
| 176 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 177 |
-
gr.Markdown("# **Lumian2-VLR-7B-Thinking Image Inference**")
|
| 178 |
-
with gr.Row():
|
| 179 |
-
with gr.Column(scale=1):
|
| 180 |
-
gr.Markdown("## Image Inference")
|
| 181 |
-
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 182 |
-
image_upload = gr.Image(type="pil", label="Image")
|
| 183 |
-
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 184 |
-
|
| 185 |
-
with gr.Accordion("Advanced options", open=False):
|
| 186 |
-
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 187 |
-
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 188 |
-
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 189 |
-
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 190 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 191 |
-
|
| 192 |
-
gr.Examples(
|
| 193 |
-
examples=image_examples,
|
| 194 |
-
inputs=[image_query, image_upload]
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
with gr.Column(scale=2):
|
| 198 |
-
gr.Markdown("## Output")
|
| 199 |
-
with gr.Tabs():
|
| 200 |
-
with gr.TabItem("Image with Bounding Box"):
|
| 201 |
-
image_output = gr.Image(label="Processed Image")
|
| 202 |
-
with gr.TabItem("Raw Text"):
|
| 203 |
-
output = gr.Textbox(label="Raw Model Output", interactive=False, lines=10)
|
| 204 |
-
with gr.TabItem("Parsed Answer"):
|
| 205 |
-
markdown_output = gr.Markdown(label="Parsed Answer")
|
| 206 |
-
|
| 207 |
-
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
|
| 208 |
-
|
| 209 |
-
gr.Markdown(
|
| 210 |
-
"""> [Lumian2-VLR-7B-Thinking](https://huggingface.co/prithivMLmods/Lumian2-VLR-7B-Thinking): The Lumian2-VLR-7B-Thinking model is a high-fidelity vision-language reasoning (experimental model) system designed for fine-grained multimodal understanding. Built on Qwen2.5-VL-7B-Instruct, this model enhances image captioning, and document comprehension through explicit grounded reasoning. It produces structured reasoning traces aligned with visual coordinates, enabling explainable multimodal reasoning."""
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
with gr.Row():
|
| 214 |
-
draw_boxes_checkbox = gr.Checkbox(label="Draw Bounding Boxes", value=True)
|
| 215 |
-
dotted_style_checkbox = gr.Checkbox(label="Use Dotted Style for Boxes", value=False)
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
image_submit.click(
|
| 219 |
-
fn=generate_image,
|
| 220 |
-
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, draw_boxes_checkbox, dotted_style_checkbox],
|
| 221 |
-
outputs=[output, markdown_output, image_output]
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
if __name__ == "__main__":
|
| 225 |
-
demo.queue(max_size=50).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|