import spaces import json import math import os import traceback from io import BytesIO from typing import Any, Dict, List, Optional, Tuple, Iterable import re import time from threading import Thread from io import BytesIO import uuid import tempfile import gradio as gr import numpy as np import torch from PIL import Image import supervision as sv from transformers import ( Qwen2_5_VLForConditionalGeneration, Glm4vForConditionalGeneration, Qwen2VLForConditionalGeneration, AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer, ) from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes # --- Theme and CSS Definition --- # Define the SteelBlue color palette colors.steel_blue = colors.Color( name="steel_blue", c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2", c400="#529AC3", c500="#4682B4", # SteelBlue base color c600="#3E72A0", c700="#36638C", c800="#2E5378", c900="#264364", c950="#1E3450", ) class SteelBlueTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.steel_blue, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) # Instantiate the new theme steel_blue_theme = SteelBlueTheme() css = """ #main-title h1 { font-size: 2.3em !important; } #output-title h2 { font-size: 2.1em !important; } """ # --- Constants and Model Setup --- MAX_INPUT_TOKEN_LENGTH = 4096 MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("--- System Information ---") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("torch.version.cuda =", torch.version.cuda) print("CUDA available:", torch.cuda.is_available()) print("CUDA device count:", torch.cuda.device_count()) if torch.cuda.is_available(): print("Current device:", torch.cuda.current_device()) print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device())) print("Using device:", device) print("--------------------------") # --- Model Loading --- # Load Camel-Doc-OCR-062825 print("Loading Camel-Doc-OCR-062825...") MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() print("Camel-Doc-OCR-062825 loaded.") # GLM-4.1V-9B-Thinking print("Loading GLM-4.1V-9B-Thinking") MODEL_ID_T = "zai-org/GLM-4.1V-9B-Thinking" processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) model_t = Glm4vForConditionalGeneration.from_pretrained( MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16 ).to(device).eval() print("GLM-4.1V-9B-Thinking loaded.") # Load moondream3 print("Loading moondream3-preview...") MODEL_ID_MD3 = "moondream/moondream3-preview" model_md3 = AutoModelForCausalLM.from_pretrained( MODEL_ID_MD3, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map={"": "cuda"}, ) model_md3.compile() print("moondream3-preview loaded and compiled.") # --- Moondream3 Utility Functions --- def create_annotated_image(image, detection_result, object_name="Object"): if not isinstance(detection_result, dict) or "objects" not in detection_result: return image original_width, original_height = image.size annotated_image = np.array(image.convert("RGB")) bboxes = [] labels = [] for i, obj in enumerate(detection_result["objects"]): x_min = int(obj["x_min"] * original_width) y_min = int(obj["y_min"] * original_height) x_max = int(obj["x_max"] * original_width) y_max = int(obj["y_max"] * original_height) x_min = max(0, min(x_min, original_width)) y_min = max(0, min(y_min, original_height)) x_max = max(0, min(x_max, original_width)) y_max = max(0, min(y_max, original_height)) if x_max > x_min and y_max > y_min: bboxes.append([x_min, y_min, x_max, y_max]) labels.append(f"{object_name} {i+1}") if not bboxes: return image detections = sv.Detections( xyxy=np.array(bboxes, dtype=np.float32), class_id=np.arange(len(bboxes)) ) bounding_box_annotator = sv.BoxAnnotator( thickness=3, color_lookup=sv.ColorLookup.INDEX ) label_annotator = sv.LabelAnnotator( text_thickness=2, text_scale=0.6, color_lookup=sv.ColorLookup.INDEX ) annotated_image = bounding_box_annotator.annotate( scene=annotated_image, detections=detections ) annotated_image = label_annotator.annotate( scene=annotated_image, detections=detections, labels=labels ) return Image.fromarray(annotated_image) def create_point_annotated_image(image, point_result): if not isinstance(point_result, dict) or "points" not in point_result: return image original_width, original_height = image.size annotated_image = np.array(image.convert("RGB")) points = [] for point in point_result["points"]: x = int(point["x"] * original_width) y = int(point["y"] * original_height) points.append([x, y]) if points: points_array = np.array(points).reshape(1, -1, 2) key_points = sv.KeyPoints(xy=points_array) vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED) annotated_image = vertex_annotator.annotate( scene=annotated_image, key_points=key_points ) return Image.fromarray(annotated_image) @spaces.GPU() def detect_objects_md3(image, prompt, task_type, max_objects): STANDARD_SIZE = (1024, 1024) if image is None: raise gr.Error("Please upload an image.") image.thumbnail(STANDARD_SIZE) t0 = time.perf_counter() if task_type == "Object Detection": settings = {"max_objects": max_objects} if max_objects > 0 else {} result = model_md3.detect(image, prompt, settings=settings) annotated_image = create_annotated_image(image, result, prompt) elif task_type == "Point Detection": result = model_md3.point(image, prompt) annotated_image = create_point_annotated_image(image, result) elif task_type == "Caption": result = model_md3.caption(image, length="normal") annotated_image = image else: result = model_md3.query(image=image, question=prompt, reasoning=True) annotated_image = image elapsed_ms = (time.perf_counter() - t0) * 1_000 if isinstance(result, dict): if "objects" in result: output_text = f"Found {len(result['objects'])} objects:\n" for i, obj in enumerate(result['objects'], 1): output_text += f"\n{i}. Bounding box: ({obj['x_min']:.3f}, {obj['y_min']:.3f}, {obj['x_max']:.3f}, {obj['y_max']:.3f})" elif "points" in result: output_text = f"Found {len(result['points'])} points:\n" for i, point in enumerate(result['points'], 1): output_text += f"\n{i}. Point: ({point['x']:.3f}, {point['y']:.3f})" elif "caption" in result: output_text = result['caption'] elif "answer" in result: output_text = f"Reasoning: {result.get('reasoning', 'N/A')}\n\nAnswer: {result['answer']}" else: output_text = json.dumps(result, indent=2) else: output_text = str(result) timing_text = f"Inference time: {elapsed_ms:.0f} ms" return annotated_image, output_text, timing_text # --- Core Application Logic (for other models) --- @spaces.GPU def process_document_stream( model_name: str, image: Image.Image, prompt_input: str, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float ): """ Main generator function for models other than Moondream3. """ if image is None: yield "Please upload an image." return if not prompt_input or not prompt_input.strip(): yield "Please enter a prompt." return # Select processor and model based on dropdown choice if model_name == "Camel-Doc-OCR-062825 (OCR)": processor, model = processor_m, model_m elif model_name == "GLM-4.1V-9B (Thinking)": processor, model = processor_t, model_t else: yield "Invalid model selected." return messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_input}]}] prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device) streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "do_sample": True if temperature > 0 else False } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text # Clean up potential model-specific tokens buffer = buffer.replace("<|im_end|>", "").replace("", "") time.sleep(0.01) yield buffer def create_gradio_interface(): """Builds and returns the Gradio web interface.""" with gr.Blocks(theme=steel_blue_theme, css=css) as demo: gr.Markdown("# **Multimodal VLM v1.0**", elem_id="main-title") gr.Markdown("Explore the capabilities of various Vision Language Models for tasks like OCR, VQA, and Object Detection.") with gr.Tabs(): # --- TAB 1: Document and General VLMs --- with gr.TabItem("📄 Document & General VLM"): with gr.Row(): with gr.Column(scale=2): model_choice = gr.Dropdown( choices=["Camel-Doc-OCR-062825 (OCR)", "GLM-4.1V-9B (Thinking)"], label="Select Model", value= "Camel-Doc-OCR-062825 (OCR)" ) image_input_doc = gr.Image(label="Upload Image", type="pil", sources=['upload'], height=290) prompt_input_doc = gr.Textbox(label="Query Input", placeholder="e.g., 'Transcribe the text in this document.'") with gr.Accordion("Advanced options", open=False): max_new_tokens = gr.Slider(minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS, step=1, label="Max New Tokens") temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7) top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=40) repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1) with gr.Row(): process_btn = gr.Button("Submit", variant="primary") clear_btn = gr.Button("Clear", variant="secondary") with gr.Column(scale=3): gr.Markdown("## Output", elem_id="output-title") output_stream = gr.Textbox(label="Raw Output Stream", interactive=False, lines=24, show_copy_button=True) gr.Examples( examples=[ ["examples/1.jpg", "Transcribe this receipt."], ["examples/2.jpg", "Extract the content."], ["examples/3.jpg", "OCR the image."], ], inputs=[image_input_doc, prompt_input_doc] ) # --- TAB 2: Moondream3 Lab --- with gr.TabItem("🌝 Moondream3"): with gr.Row(): with gr.Column(scale=1): md3_image_input = gr.Image(label="Upload an image", type="pil", height=400) md3_task_type = gr.Radio( choices=["Object Detection", "Point Detection", "Caption", "Visual Question Answering"], label="Task Type", value="Object Detection" ) md3_prompt_input = gr.Textbox( label="Prompt (object to detect/question to ask)", placeholder="e.g., 'car', 'person', 'What's in this image?'" ) md3_max_objects = gr.Number( label="Max Objects (for Object Detection only)", value=10, minimum=1, maximum=50, step=1, visible=True ) md3_generate_btn = gr.Button(value="Submit", variant="primary") with gr.Column(scale=1): md3_output_image = gr.Image(type="pil", label="Result", height=400) md3_output_textbox = gr.Textbox(label="Model Response", lines=10, show_copy_button=True) md3_output_time = gr.Markdown() gr.Examples( examples=[ ["md3/1.jpg", "Object Detection", "boats", 7], ["md3/2.jpg", "Point Detection", "children", 7], ["md3/3.png", "Caption", "", 5], ["md3/4.jpeg", "Visual Question Answering", "Analyze the GDP trend over the years.", 5], ], inputs=[md3_image_input, md3_task_type, md3_prompt_input, md3_max_objects], label="Click an example to populate inputs" ) process_btn.click( fn=process_document_stream, inputs=[model_choice, image_input_doc, prompt_input_doc, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output_stream] ) clear_btn.click(lambda: (None, "", ""), outputs=[image_input_doc, prompt_input_doc, output_stream]) # Moondream3 Tab def update_max_objects_visibility(task): return gr.update(visible=(task == "Object Detection")) md3_task_type.change(fn=update_max_objects_visibility, inputs=[md3_task_type], outputs=[md3_max_objects]) md3_generate_btn.click( fn=detect_objects_md3, inputs=[md3_image_input, md3_prompt_input, md3_task_type, md3_max_objects], outputs=[md3_output_image, md3_output_textbox, md3_output_time] ) return demo if __name__ == "__main__": demo = create_gradio_interface() demo.queue(max_size=50).launch(ssr_mode=False, mcp_server=True, show_error=True)