Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,429 Bytes
de353d4 dbcd6fd 3af12da dbcd6fd e0da60b dbcd6fd 3ce50bb dbcd6fd 55a0951 451ef4f dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd 55a0951 451ef4f dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd 3af12da dbcd6fd 451ef4f dbcd6fd 3af12da dbcd6fd a5719dd dbcd6fd f9c3442 dbcd6fd 3af12da dbcd6fd 63617d6 dbcd6fd 6c507a8 dbcd6fd cd456e7 dbcd6fd 3af12da 451ef4f 3af12da bd53067 cd456e7 dbcd6fd 4abc4c8 e50258a 451ef4f 228c83f 55a0951 228c83f dbcd6fd e0da60b dbcd6fd 4b1184e cd456e7 dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd 1643a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from aura_sr import AuraSR
from gradio_imageslider import ImageSlider
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- # Device and CUDA Setup Check ---
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Main Model Initialization ---
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# --- Load All Adapters ---
pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="cleanser")
pipe.load_lora_weights("prithivMLmods/Photo-Restore-i2i", weight_name="Photo-Restore-i2i.safetensors", adapter_name="restorer")
pipe.load_lora_weights("prithivMLmods/Polaroid-Warm-i2i", weight_name="Polaroid-Warm-i2i.safetensors", adapter_name="polaroid")
pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil")
pipe.load_lora_weights("prithivMLmods/LZO-1-Preview", weight_name="LZO-1-Preview.safetensors", adapter_name="lzo")
pipe.load_lora_weights("prithivMLmods/Kontext-Watermark-Remover", weight_name="Kontext-Watermark-Remover.safetensors", adapter_name="watermark-remover")
# --- Upscaler Model Initialization ---
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
@spaces.GPU
def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
"""
Perform image editing and optional upscaling, returning a pair for the ImageSlider.
"""
if not input_image:
raise gr.Error("Please upload an image for editing.")
if lora_adapter == "PhotoCleanser":
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
elif lora_adapter == "PhotoRestorer":
pipe.set_adapters(["restorer"], adapter_weights=[1.0])
elif lora_adapter == "PolaroidWarm":
pipe.set_adapters(["polaroid"], adapter_weights=[1.0])
elif lora_adapter == "MonochromePencil":
pipe.set_adapters(["pencil"], adapter_weights=[1.0])
elif lora_adapter == "LZO-Zoom":
pipe.set_adapters(["lzo"], adapter_weights=[1.0])
elif lora_adapter == "Kontext-Watermark-Remover":
pipe.set_adapters(["watermark-remover"], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
original_image = input_image.copy().convert("RGB")
image = pipe(
image=original_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = original_image.size[0],
height = original_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
if upscale_image:
progress(0.8, desc="Upscaling image...")
image = aura_sr.upscale_4x(image)
return (original_image, image), seed, gr.Button(visible=True)
@spaces.GPU
def infer_example(input_image, prompt, lora_adapter):
"""
Wrapper function for gr.Examples to call the main infer logic for the slider.
"""
(original_image, generated_image), seed, _ = infer(input_image, prompt, lora_adapter, upscale_image=False)
return (original_image, generated_image), seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Photo-Mate-i2i**", elem_id="main-title")
gr.Markdown("Image manipulation with FLUX.1 Kontext adapters. [How to Use](https://huggingface.co/spaces/prithivMLmods/Photo-Mate-i2i/discussions/2)")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height="300")
with gr.Row():
prompt = gr.Text(
label="Edit Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses')",
container=False,
)
run_button = gr.Button("Run", variant="primary", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
with gr.Column():
output_slider = ImageSlider(label="Before / After", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Chosen LoRA",
choices=["PhotoCleanser", "PhotoRestorer", "PolaroidWarm", "MonochromePencil", "LZO-Zoom", "Kontext-Watermark-Remover"],
value="PhotoCleanser"
)
with gr.Row():
upscale_checkbox = gr.Checkbox(label="Upscale the final image", value=False)
gr.Examples(
examples=[
["photocleanser/2.png", "[photo content], remove the cat from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["photocleanser/1.png", "[photo content], remove the football from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["watermark/12.jpeg", "[photo content], remove any watermark text or logos from the image while preserving the background, texture, lighting, and overall realism. Ensure the edited areas blend seamlessly with surrounding details, leaving no visible traces of watermark removal.", "Kontext-Watermark-Remover"],
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["lzo/1.jpg", "[photo content], zoom in on the specified [face close-up], enhancing resolution and detail while preserving sharpness, realism, and original context. Maintain natural proportions and background continuity around the zoomed area.", "LZO-Zoom"],
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["polaroid/1.png", "[photo content], in the style of a vintage Polaroid, with warm, faded tones, and a white border.", "PolaroidWarm"],
["pencil/1.png", "[photo content], replicate the image as a pencil illustration, black and white, with sketch-like detailing.", "MonochromePencil"],
],
inputs=[input_image, prompt, lora_adapter],
outputs=[output_slider, seed],
fn=infer_example,
cache_examples="lazy",
label="Examples"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps],
outputs=[output_slider, seed, reuse_button]
)
reuse_button.click(
fn=lambda images: images[1] if isinstance(images, (list, tuple)) and len(images) > 1 else images,
inputs=[output_slider],
outputs=[input_image]
)
demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |