Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,16 +11,19 @@ from huggingface_hub import hf_hub_download
|
|
| 11 |
|
| 12 |
MAX_SEED = np.iinfo(np.int32).max
|
| 13 |
|
|
|
|
| 14 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
@spaces.GPU
|
| 21 |
-
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 22 |
"""
|
| 23 |
-
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 24 |
|
| 25 |
This function takes an input image and a text prompt to generate a modified version
|
| 26 |
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
|
@@ -30,36 +33,27 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 30 |
input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
| 31 |
to RGB format if not already in that format.
|
| 32 |
prompt (str): Text description of the desired edit to apply to the image.
|
| 33 |
-
|
| 34 |
seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
prompt. Higher values mean stronger adherence to the prompt but may reduce
|
| 40 |
-
image quality. Range: 1.0-10.0. Defaults to 2.5.
|
| 41 |
-
steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 42 |
-
Range: 1-30. Defaults to 28.
|
| 43 |
-
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
| 44 |
-
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
| 45 |
|
| 46 |
Returns:
|
| 47 |
-
tuple: A 3-tuple containing
|
| 48 |
-
- PIL.Image.Image: The generated/edited image
|
| 49 |
-
- int: The seed value used for generation (useful when randomize_seed=True)
|
| 50 |
-
- gr.update: Gradio update object to make the reuse button visible
|
| 51 |
-
|
| 52 |
-
Example:
|
| 53 |
-
>>> edited_image, used_seed, button_update = infer(
|
| 54 |
-
... input_image=my_image,
|
| 55 |
-
... prompt="Add sunglasses",
|
| 56 |
-
... seed=123,
|
| 57 |
-
... randomize_seed=False,
|
| 58 |
-
... guidance_scale=2.5
|
| 59 |
-
... )
|
| 60 |
"""
|
| 61 |
if randomize_seed:
|
| 62 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
if input_image:
|
| 65 |
input_image = input_image.convert("RGB")
|
|
@@ -79,13 +73,30 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 79 |
num_inference_steps=steps,
|
| 80 |
generator=torch.Generator().manual_seed(seed),
|
| 81 |
).images[0]
|
|
|
|
| 82 |
return image, seed, gr.Button(visible=True)
|
| 83 |
|
|
|
|
| 84 |
@spaces.GPU
|
| 85 |
-
def
|
| 86 |
-
image, seed, _ = infer(input_image, prompt)
|
| 87 |
return image, seed
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
css="""
|
| 90 |
#col-container {
|
| 91 |
margin: 0 auto;
|
|
@@ -98,6 +109,13 @@ with gr.Blocks(css=css, theme="YTheme/Minecraft") as demo:
|
|
| 98 |
with gr.Column(elem_id="col-container"):
|
| 99 |
gr.Markdown(f"""# **[Photo-Mate-i2i](https://huggingface.co/collections/prithivMLmods/i2i-kontext-exp-68ce573b5c0623476b636ec7)**
|
| 100 |
Image manipulation with Kontext adapters""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
with gr.Row():
|
| 102 |
with gr.Column():
|
| 103 |
input_image = gr.Image(label="Upload the image for editing", type="pil", height="300")
|
|
@@ -106,60 +124,69 @@ with gr.Blocks(css=css, theme="YTheme/Minecraft") as demo:
|
|
| 106 |
label="Prompt",
|
| 107 |
show_label=False,
|
| 108 |
max_lines=1,
|
| 109 |
-
placeholder="Enter your prompt for editing (e.g., 'Remove
|
| 110 |
container=False,
|
| 111 |
)
|
| 112 |
run_button = gr.Button("Run", scale=0)
|
| 113 |
with gr.Accordion("Advanced Settings", open=False):
|
| 114 |
|
| 115 |
seed = gr.Slider(
|
| 116 |
-
label="Seed",
|
| 117 |
-
minimum=0,
|
| 118 |
-
maximum=MAX_SEED,
|
| 119 |
-
step=1,
|
| 120 |
-
value=0,
|
| 121 |
)
|
| 122 |
-
|
| 123 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 124 |
-
|
| 125 |
guidance_scale = gr.Slider(
|
| 126 |
-
label="Guidance Scale",
|
| 127 |
-
minimum=1,
|
| 128 |
-
maximum=10,
|
| 129 |
-
step=0.1,
|
| 130 |
-
value=2.5,
|
| 131 |
)
|
| 132 |
-
|
| 133 |
steps = gr.Slider(
|
| 134 |
-
label="Steps",
|
| 135 |
-
minimum=1,
|
| 136 |
-
maximum=30,
|
| 137 |
-
value=28,
|
| 138 |
-
step=1
|
| 139 |
)
|
| 140 |
|
| 141 |
with gr.Column():
|
| 142 |
result = gr.Image(label="Result", show_label=False, interactive=False, format="png")
|
| 143 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
| 157 |
gr.on(
|
| 158 |
triggers=[run_button.click, prompt.submit],
|
| 159 |
fn = infer,
|
| 160 |
-
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 161 |
outputs = [result, seed, reuse_button]
|
| 162 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
reuse_button.click(
|
| 164 |
fn = lambda image: image,
|
| 165 |
inputs = [result],
|
|
|
|
| 11 |
|
| 12 |
MAX_SEED = np.iinfo(np.int32).max
|
| 13 |
|
| 14 |
+
# Load the base pipeline
|
| 15 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 16 |
|
| 17 |
+
# Load the PhotoCleanser adapter
|
| 18 |
+
pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="cleanser")
|
| 19 |
+
# Load the Photo-Restore adapter
|
| 20 |
+
pipe.load_lora_weights("prithivMLmods/Photo-Restore-i2i", weight_name="Photo-Restore-i2i.safetensors", adapter_name="restorer")
|
| 21 |
+
|
| 22 |
|
| 23 |
@spaces.GPU
|
| 24 |
+
def infer(input_image, prompt, lora_selection, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 25 |
"""
|
| 26 |
+
Perform image editing using the FLUX.1 Kontext pipeline with selectable LoRA adapters.
|
| 27 |
|
| 28 |
This function takes an input image and a text prompt to generate a modified version
|
| 29 |
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
|
|
|
| 33 |
input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
| 34 |
to RGB format if not already in that format.
|
| 35 |
prompt (str): Text description of the desired edit to apply to the image.
|
| 36 |
+
lora_selection (str): The name of the LoRA adapter to use ("PhotoCleanser" or "PhotoRestore").
|
| 37 |
seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
| 38 |
+
randomize_seed (bool, optional): If True, generates a random seed. Defaults to False.
|
| 39 |
+
guidance_scale (float, optional): Controls how closely the model follows the prompt. Defaults to 2.5.
|
| 40 |
+
steps (int, optional): Number of diffusion steps. Defaults to 28.
|
| 41 |
+
progress (gr.Progress, optional): Gradio progress tracker.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
Returns:
|
| 44 |
+
tuple: A 3-tuple containing the generated image, the seed used, and a Gradio update object.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
"""
|
| 46 |
if randomize_seed:
|
| 47 |
seed = random.randint(0, MAX_SEED)
|
| 48 |
+
|
| 49 |
+
# Set the adapter based on the user's selection
|
| 50 |
+
if lora_selection == "PhotoCleanser":
|
| 51 |
+
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
|
| 52 |
+
elif lora_selection == "PhotoRestore":
|
| 53 |
+
pipe.set_adapters(["restorer"], adapter_weights=[1.0])
|
| 54 |
+
else: # If "None" or any other value, disable LoRA
|
| 55 |
+
pipe.disable_lora()
|
| 56 |
+
|
| 57 |
|
| 58 |
if input_image:
|
| 59 |
input_image = input_image.convert("RGB")
|
|
|
|
| 73 |
num_inference_steps=steps,
|
| 74 |
generator=torch.Generator().manual_seed(seed),
|
| 75 |
).images[0]
|
| 76 |
+
|
| 77 |
return image, seed, gr.Button(visible=True)
|
| 78 |
|
| 79 |
+
# Wrapper function for PhotoCleanser examples
|
| 80 |
@spaces.GPU
|
| 81 |
+
def infer_example_cleanser(input_image, prompt):
|
| 82 |
+
image, seed, _ = infer(input_image, prompt, lora_selection="PhotoCleanser")
|
| 83 |
return image, seed
|
| 84 |
|
| 85 |
+
# Wrapper function for PhotoRestore examples
|
| 86 |
+
@spaces.GPU
|
| 87 |
+
def infer_example_restorer(input_image, prompt):
|
| 88 |
+
image, seed, _ = infer(input_image, prompt, lora_selection="PhotoRestore")
|
| 89 |
+
return image, seed
|
| 90 |
+
|
| 91 |
+
# Function to switch visibility of example sets based on dropdown selection
|
| 92 |
+
def switch_examples(lora_choice):
|
| 93 |
+
if lora_choice == "PhotoCleanser":
|
| 94 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 95 |
+
elif lora_choice == "PhotoRestore":
|
| 96 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 97 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
css="""
|
| 101 |
#col-container {
|
| 102 |
margin: 0 auto;
|
|
|
|
| 109 |
with gr.Column(elem_id="col-container"):
|
| 110 |
gr.Markdown(f"""# **[Photo-Mate-i2i](https://huggingface.co/collections/prithivMLmods/i2i-kontext-exp-68ce573b5c0623476b636ec7)**
|
| 111 |
Image manipulation with Kontext adapters""")
|
| 112 |
+
|
| 113 |
+
lora_dropdown = gr.Dropdown(
|
| 114 |
+
label="Select Adapter (LoRA)",
|
| 115 |
+
choices=["PhotoCleanser", "PhotoRestore"],
|
| 116 |
+
value="PhotoCleanser"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
with gr.Row():
|
| 120 |
with gr.Column():
|
| 121 |
input_image = gr.Image(label="Upload the image for editing", type="pil", height="300")
|
|
|
|
| 124 |
label="Prompt",
|
| 125 |
show_label=False,
|
| 126 |
max_lines=1,
|
| 127 |
+
placeholder="Enter your prompt for editing (e.g., 'Remove the cat')",
|
| 128 |
container=False,
|
| 129 |
)
|
| 130 |
run_button = gr.Button("Run", scale=0)
|
| 131 |
with gr.Accordion("Advanced Settings", open=False):
|
| 132 |
|
| 133 |
seed = gr.Slider(
|
| 134 |
+
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
|
|
|
| 136 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
| 137 |
guidance_scale = gr.Slider(
|
| 138 |
+
label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
|
|
|
| 140 |
steps = gr.Slider(
|
| 141 |
+
label="Steps", minimum=1, maximum=30, value=28, step=1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
|
| 144 |
with gr.Column():
|
| 145 |
result = gr.Image(label="Result", show_label=False, interactive=False, format="png")
|
| 146 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 147 |
|
| 148 |
+
with gr.Group():
|
| 149 |
+
cleanser_examples = gr.Examples(
|
| 150 |
+
examples=[
|
| 151 |
+
["photocleanser/1.png", "[photo content], remove the embroidered pattern from the image while preserving the background and remaining elements, maintaining realism and original details."],
|
| 152 |
+
["photocleanser/2.png", "[photo content], remove the cat from the image while preserving the background and remaining elements, maintaining realism and original details."]
|
| 153 |
+
],
|
| 154 |
+
inputs=[input_image, prompt],
|
| 155 |
+
outputs=[result, seed],
|
| 156 |
+
fn=infer_example_cleanser,
|
| 157 |
+
cache_examples=False,
|
| 158 |
+
label="PhotoCleanser Examples"
|
| 159 |
+
)
|
| 160 |
|
| 161 |
+
restorer_examples = gr.Examples(
|
| 162 |
+
examples=[
|
| 163 |
+
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look."],
|
| 164 |
+
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look."]
|
| 165 |
+
],
|
| 166 |
+
inputs=[input_image, prompt],
|
| 167 |
+
outputs=[result, seed],
|
| 168 |
+
fn=infer_example_restorer,
|
| 169 |
+
cache_examples=False,
|
| 170 |
+
visible=False,
|
| 171 |
+
label="PhotoRestore Examples"
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Event listener for the main run button
|
| 175 |
gr.on(
|
| 176 |
triggers=[run_button.click, prompt.submit],
|
| 177 |
fn = infer,
|
| 178 |
+
inputs = [input_image, prompt, lora_dropdown, seed, randomize_seed, guidance_scale, steps],
|
| 179 |
outputs = [result, seed, reuse_button]
|
| 180 |
)
|
| 181 |
+
|
| 182 |
+
# Event listener to switch example sets when the dropdown changes
|
| 183 |
+
lora_dropdown.change(
|
| 184 |
+
fn=switch_examples,
|
| 185 |
+
inputs=lora_dropdown,
|
| 186 |
+
outputs=[cleanser_examples, restorer_examples]
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Event listener for the reuse button
|
| 190 |
reuse_button.click(
|
| 191 |
fn = lambda image: image,
|
| 192 |
inputs = [result],
|