Spaces:
Running
on
Zero
Running
on
Zero
upload app (#2)
Browse files- upload app (10eb745bd5ef5e8abf5d771a79ef2732cd570ecd)
- .gitattributes +2 -0
- app.py +161 -0
- images/1.png +3 -0
- images/2.jpg +0 -0
- images/3.jpg +3 -0
- images/4.png +0 -0
- requirements.txt +16 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
images/1.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
images/3.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import threading
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from transformers import (
|
| 9 |
+
AutoModelForImageTextToText,
|
| 10 |
+
AutoProcessor,
|
| 11 |
+
TextIteratorStreamer,
|
| 12 |
+
)
|
| 13 |
+
from transformers.image_utils import load_image
|
| 14 |
+
|
| 15 |
+
# Constants for text generation
|
| 16 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 17 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 18 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 19 |
+
|
| 20 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
|
| 22 |
+
# Load LFM2-VL-1.6B
|
| 23 |
+
MODEL_ID_M = "LiquidAI/LFM2-VL-1.6B"
|
| 24 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 25 |
+
model_m = AutoModelForImageTextToText.from_pretrained(
|
| 26 |
+
MODEL_ID_M,
|
| 27 |
+
trust_remote_code=True,
|
| 28 |
+
torch_dtype="bfloat16",
|
| 29 |
+
).to(device).eval()
|
| 30 |
+
|
| 31 |
+
# Load LFM2-VL-450M
|
| 32 |
+
MODEL_ID_T = "LiquidAI/LFM2-VL-450M"
|
| 33 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
| 34 |
+
model_t = AutoModelForImageTextToText.from_pretrained(
|
| 35 |
+
MODEL_ID_T,
|
| 36 |
+
trust_remote_code=True,
|
| 37 |
+
torch_dtype="bfloat16",
|
| 38 |
+
).to(device).eval()
|
| 39 |
+
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 42 |
+
max_new_tokens: int = 1024,
|
| 43 |
+
temperature: float = 0.6,
|
| 44 |
+
top_p: float = 0.9,
|
| 45 |
+
top_k: int = 50,
|
| 46 |
+
repetition_penalty: float = 1.2):
|
| 47 |
+
"""
|
| 48 |
+
Generate responses using the selected model for image input.
|
| 49 |
+
"""
|
| 50 |
+
if model_name == "LFM2-VL-1.6B":
|
| 51 |
+
processor = processor_m
|
| 52 |
+
model = model_m
|
| 53 |
+
elif model_name == "LFM2-VL-450M":
|
| 54 |
+
processor = processor_t
|
| 55 |
+
model = model_t
|
| 56 |
+
else:
|
| 57 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
if image is None:
|
| 61 |
+
yield "Please upload an image.", "Please upload an image."
|
| 62 |
+
return
|
| 63 |
+
|
| 64 |
+
messages = [{
|
| 65 |
+
"role": "user",
|
| 66 |
+
"content": [
|
| 67 |
+
{"type": "image", "image": image},
|
| 68 |
+
{"type": "text", "text": text},
|
| 69 |
+
]
|
| 70 |
+
}]
|
| 71 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 72 |
+
inputs = processor(
|
| 73 |
+
text=[prompt_full],
|
| 74 |
+
images=[image],
|
| 75 |
+
return_tensors="pt",
|
| 76 |
+
padding=True,
|
| 77 |
+
truncation=False,
|
| 78 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 79 |
+
).to(device)
|
| 80 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 81 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 82 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 83 |
+
thread.start()
|
| 84 |
+
buffer = ""
|
| 85 |
+
for new_text in streamer:
|
| 86 |
+
buffer += new_text
|
| 87 |
+
time.sleep(0.01)
|
| 88 |
+
yield buffer, buffer
|
| 89 |
+
|
| 90 |
+
# Define examples for image inference
|
| 91 |
+
image_examples = [
|
| 92 |
+
["According to this diagram, where do severe droughts occur?", "images/1.png"],
|
| 93 |
+
["Could you describe this image?", "images/2.jpg"],
|
| 94 |
+
["Provide a description of this image.", "images/3.jpg"],
|
| 95 |
+
["Explain the movie shot in detail.", "images/4.png"],
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
# Updated CSS with model choice highlighting
|
| 99 |
+
css = """
|
| 100 |
+
.submit-btn {
|
| 101 |
+
background-color: #2980b9 !important;
|
| 102 |
+
color: white !important;
|
| 103 |
+
}
|
| 104 |
+
.submit-btn:hover {
|
| 105 |
+
background-color: #3498db !important;
|
| 106 |
+
}
|
| 107 |
+
.canvas-output {
|
| 108 |
+
border: 2px solid #4682B4;
|
| 109 |
+
border-radius: 10px;
|
| 110 |
+
padding: 20px;
|
| 111 |
+
}
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
# Create the Gradio Interface
|
| 115 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 116 |
+
gr.Markdown("# **LFM2-VL by [LiquidAI](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa)**")
|
| 117 |
+
with gr.Row():
|
| 118 |
+
with gr.Column():
|
| 119 |
+
image_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query")
|
| 120 |
+
image_upload = gr.Image(type="pil", label="Image")
|
| 121 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 122 |
+
gr.Examples(
|
| 123 |
+
examples=image_examples,
|
| 124 |
+
inputs=[image_query, image_upload]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
with gr.Accordion("Advanced options", open=False):
|
| 128 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 129 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 130 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 131 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 132 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 133 |
+
|
| 134 |
+
with gr.Column():
|
| 135 |
+
with gr.Column(elem_classes="canvas-output"):
|
| 136 |
+
gr.Markdown("## Output")
|
| 137 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
|
| 138 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 139 |
+
markdown_output = gr.Markdown(label="(Result.md)")
|
| 140 |
+
|
| 141 |
+
model_choice = gr.Dropdown(
|
| 142 |
+
choices=["LFM2-VL-1.6B", "LFM2-VL-450M"],
|
| 143 |
+
label="Select Model",
|
| 144 |
+
value="LFM2-VL-1.6B"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/LFM2-VL-Demo/discussions)")
|
| 148 |
+
gr.Markdown("> [LFM2‑VL](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa) is [Liquid AI’s](https://huggingface.co/LiquidAI) first multimodal model series, featuring models with 450M and 1.6B parameters designed for efficient processing of both text and images at native resolutions up to 512×512, ideal for low-latency edge AI applications; leveraging a hybrid conv+attention LFM2 backbone and SigLIP2 NaFlex vision encoders, it delivers flexible, user-tunable inference with rapid speeds (2× faster than existing VLMs on GPU)")
|
| 149 |
+
gr.Markdown("> Competitive accuracy, and dynamic image tokenization for scalable throughput, while supporting 32,768 text tokens and English language generation, and is best fine-tuned for targeted use cases using provided supervised fine-tuning tools, all released under the LFM Open License v1.0 for research and deployment scenarios not requiring safety-critical guarantees.")
|
| 150 |
+
|
| 151 |
+
# Define the submit button action
|
| 152 |
+
image_submit.click(fn=generate_image,
|
| 153 |
+
inputs=[
|
| 154 |
+
model_choice, image_query, image_upload,
|
| 155 |
+
max_new_tokens, temperature, top_p, top_k,
|
| 156 |
+
repetition_penalty
|
| 157 |
+
],
|
| 158 |
+
outputs=[output, markdown_output])
|
| 159 |
+
|
| 160 |
+
if __name__ == "__main__":
|
| 161 |
+
demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|
images/1.png
ADDED
|
Git LFS Details
|
images/2.jpg
ADDED
|
images/3.jpg
ADDED
|
Git LFS Details
|
images/4.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
av
|
| 2 |
+
peft
|
| 3 |
+
torch
|
| 4 |
+
spaces
|
| 5 |
+
gradio
|
| 6 |
+
pillow
|
| 7 |
+
requests
|
| 8 |
+
accelerate
|
| 9 |
+
safetensors
|
| 10 |
+
torchvision
|
| 11 |
+
transformers
|
| 12 |
+
huggingface_hub
|
| 13 |
+
opencv-python
|
| 14 |
+
sentencepiece
|
| 15 |
+
qwen-vl-utils
|
| 16 |
+
transformers-stream-generator
|