Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| from pathlib import Path | |
| from io import BytesIO | |
| from typing import Optional, Tuple, Dict, Any, Iterable | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import requests | |
| import fitz | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| Qwen3VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| # --- Theme and CSS Definition --- | |
| # Define the new OrangeRed color palette | |
| colors.orange_red = colors.Color( | |
| name="orange_red", | |
| c50="#FFF0E5", | |
| c100="#FFE0CC", | |
| c200="#FFC299", | |
| c300="#FFA366", | |
| c400="#FF8533", | |
| c500="#FF4500", # OrangeRed base color | |
| c600="#E63E00", | |
| c700="#CC3700", | |
| c800="#B33000", | |
| c900="#992900", | |
| c950="#802200", | |
| ) | |
| class OrangeRedTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.orange_red, # Use the new color | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| # Instantiate the new theme | |
| orange_red_theme = OrangeRedTheme() | |
| css = """ | |
| #main-title h1 { | |
| font-size: 2.3em !important; | |
| } | |
| #output-title h2 { | |
| font-size: 2.1em !important; | |
| } | |
| """ | |
| MAX_MAX_NEW_TOKENS = 4096 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("Using device:", device) | |
| # --- Model Loading --- | |
| # Load Qwen3-VL-4B-Instruct | |
| MODEL_ID_Q4B = "Qwen/Qwen3-VL-4B-Instruct" | |
| processor_q4b = AutoProcessor.from_pretrained(MODEL_ID_Q4B, trust_remote_code=True) | |
| model_q4b = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Q4B, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).to(device).eval() | |
| # Load Qwen3-VL-8B-Instruct | |
| MODEL_ID_Q8B = "Qwen/Qwen3-VL-8B-Instruct" | |
| processor_q8b = AutoProcessor.from_pretrained(MODEL_ID_Q8B, trust_remote_code=True) | |
| model_q8b = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Q8B, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).to(device).eval() | |
| # Load Qwen3-VL-2B-Instruct | |
| MODEL_ID_Q2B = "Qwen/Qwen3-VL-2B-Instruct" | |
| processor_q2b = AutoProcessor.from_pretrained(MODEL_ID_Q2B, trust_remote_code=True) | |
| model_q2b = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Q2B, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).to(device).eval() | |
| # Load Qwen2.5-VL-7B-Instruct | |
| MODEL_ID_M7B = "Qwen/Qwen2.5-VL-7B-Instruct" | |
| processor_m7b = AutoProcessor.from_pretrained(MODEL_ID_M7B, trust_remote_code=True) | |
| model_m7b = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M7B, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Qwen2.5-VL-3B-Instruct | |
| MODEL_ID_X3B = "Qwen/Qwen2.5-VL-3B-Instruct" | |
| processor_x3b = AutoProcessor.from_pretrained(MODEL_ID_X3B, trust_remote_code=True) | |
| model_x3b = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X3B, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # --- Helper Functions --- | |
| def select_model(model_name: str): | |
| if model_name == "Qwen3-VL-4B-Instruct": | |
| return processor_q4b, model_q4b | |
| elif model_name == "Qwen3-VL-8B-Instruct": | |
| return processor_q8b, model_q8b | |
| elif model_name == "Qwen3-VL-2B-Instruct": | |
| return processor_q2b, model_q2b | |
| elif model_name == "Qwen2.5-VL-7B-Instruct": | |
| return processor_m7b, model_m7b | |
| elif model_name == "Qwen2.5-VL-3B-Instruct": | |
| return processor_x3b, model_x3b | |
| else: | |
| raise ValueError("Invalid model selected.") | |
| def extract_gif_frames(gif_path: str): | |
| if not gif_path: | |
| return [] | |
| with Image.open(gif_path) as gif: | |
| total_frames = gif.n_frames | |
| frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) | |
| frames = [] | |
| for i in frame_indices: | |
| gif.seek(i) | |
| frames.append(gif.convert("RGB").copy()) | |
| return frames | |
| def downsample_video(video_path): | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| frames.append(pil_image) | |
| vidcap.release() | |
| return frames | |
| def convert_pdf_to_images(file_path: str, dpi: int = 200): | |
| if not file_path: | |
| return [] | |
| images = [] | |
| pdf_document = fitz.open(file_path) | |
| zoom = dpi / 72.0 | |
| mat = fitz.Matrix(zoom, zoom) | |
| for page_num in range(len(pdf_document)): | |
| page = pdf_document.load_page(page_num) | |
| pix = page.get_pixmap(matrix=mat) | |
| img_data = pix.tobytes("png") | |
| images.append(Image.open(BytesIO(img_data))) | |
| pdf_document.close() | |
| return images | |
| def get_initial_pdf_state() -> Dict[str, Any]: | |
| return {"pages": [], "total_pages": 0, "current_page_index": 0} | |
| def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]: | |
| state = get_initial_pdf_state() | |
| if not file_path: | |
| return None, state, '<div style="text-align:center;">No file loaded</div>' | |
| try: | |
| pages = convert_pdf_to_images(file_path) | |
| if not pages: | |
| return None, state, '<div style="text-align:center;">Could not load file</div>' | |
| state["pages"] = pages | |
| state["total_pages"] = len(pages) | |
| page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>' | |
| return pages[0], state, page_info_html | |
| except Exception as e: | |
| return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>' | |
| def navigate_pdf_page(direction: str, state: Dict[str, Any]): | |
| if not state or not state["pages"]: | |
| return None, state, '<div style="text-align:center;">No file loaded</div>' | |
| current_index = state["current_page_index"] | |
| total_pages = state["total_pages"] | |
| if direction == "prev": | |
| new_index = max(0, current_index - 1) | |
| elif direction == "next": | |
| new_index = min(total_pages - 1, current_index + 1) | |
| else: | |
| new_index = current_index | |
| state["current_page_index"] = new_index | |
| image_preview = state["pages"][new_index] | |
| page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>' | |
| return image_preview, state, page_info_html | |
| # --- Generation Functions --- | |
| def generate_image(model_name: str, text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| try: | |
| processor, model = select_model(model_name) | |
| except ValueError as e: | |
| yield str(e), str(e) | |
| return | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(model_name: str, text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| try: | |
| processor, model = select_model(model_name) | |
| except ValueError as e: | |
| yield str(e), str(e) | |
| return | |
| frames = downsample_video(video_path) | |
| if not frames: | |
| yield "Could not process video.", "Could not process video." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| for frame in frames: | |
| messages[0]["content"].insert(0, {"type": "image"}) | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| # buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_pdf(model_name: str, text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if not state or not state["pages"]: | |
| yield "Please upload a PDF file first.", "Please upload a PDF file first." | |
| return | |
| try: | |
| processor, model = select_model(model_name) | |
| except ValueError as e: | |
| yield str(e), str(e) | |
| return | |
| page_images = state["pages"] | |
| full_response = "" | |
| for i, image in enumerate(page_images): | |
| page_header = f"--- Page {i+1}/{len(page_images)} ---\n" | |
| yield full_response + page_header, full_response + page_header | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| page_buffer = "" | |
| for new_text in streamer: | |
| page_buffer += new_text | |
| yield full_response + page_header + page_buffer, full_response + page_header + page_buffer | |
| time.sleep(0.01) | |
| full_response += page_header + page_buffer + "\n\n" | |
| def generate_caption(model_name: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if image is None: | |
| yield "Please upload an image to caption.", "Please upload an image to caption." | |
| return | |
| try: | |
| processor, model = select_model(model_name) | |
| except ValueError as e: | |
| yield str(e), str(e) | |
| return | |
| system_prompt = ( | |
| "You are an AI assistant. For the given image, write a precise caption and provide a structured set of " | |
| "attributes describing visual elements like objects, people, actions, colors, and environment." | |
| ) | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_gif(model_name: str, text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if gif_path is None: | |
| yield "Please upload a GIF.", "Please upload a GIF." | |
| return | |
| try: | |
| processor, model = select_model(model_name) | |
| except ValueError as e: | |
| yield str(e), str(e) | |
| return | |
| frames = extract_gif_frames(gif_path) | |
| if not frames: | |
| yield "Could not process GIF.", "Could not process GIF." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| for frame in frames: | |
| messages[0]["content"].insert(0, {"type": "image"}) | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| # buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # --- Examples and Gradio UI --- | |
| image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"], | |
| ["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"], | |
| ["Solve the problem...", "examples/images/3.png"]] | |
| video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"], | |
| ["Explain the video in detail.", "examples/videos/2.mp4"]] | |
| pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"], | |
| ["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]] | |
| gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"], | |
| ["Describe this GIF.", "examples/gifs/2.gif"]] | |
| caption_examples = [["examples/captions/1.JPG"], | |
| ["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]] | |
| with gr.Blocks(theme=orange_red_theme, css=css) as demo: | |
| pdf_state = gr.State(value=get_initial_pdf_state()) | |
| gr.Markdown("# **Qwen3-VL-Outpost**", elem_id="main-title") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| image_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) | |
| with gr.TabItem("PDF Inference"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'") | |
| pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) | |
| pdf_submit = gr.Button("Submit", variant="primary") | |
| with gr.Column(scale=1): | |
| pdf_preview_img = gr.Image(label="PDF Preview", height=290) | |
| with gr.Row(): | |
| prev_page_btn = gr.Button("◀ Previous") | |
| page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>') | |
| next_page_btn = gr.Button("Next ▶") | |
| gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload]) | |
| with gr.TabItem("Long Caption"): | |
| caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290) | |
| caption_submit = gr.Button("Generate Caption", variant="primary") | |
| gr.Examples(examples=caption_examples, inputs=[caption_image_upload]) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Upload Video(≤30s)", height=290) | |
| video_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=video_examples, inputs=[video_query, video_upload]) | |
| with gr.TabItem("Gif Inference"): | |
| gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'") | |
| gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290) | |
| gif_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload]) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(scale=3): | |
| gr.Markdown("## Output", elem_id="output-title") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=12, show_copy_button=True) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[ | |
| {"left": "$$", "right": "$$", "display": True}, | |
| {"left": "$", "right": "$", "display": False} | |
| ]) | |
| model_choice = gr.Radio( | |
| choices=[ | |
| "Qwen3-VL-4B-Instruct", | |
| "Qwen3-VL-8B-Instruct", | |
| "Qwen3-VL-2B-Instruct", | |
| "Qwen2.5-VL-7B-Instruct", | |
| "Qwen2.5-VL-3B-Instruct" | |
| ], | |
| label="Select Model", | |
| value="Qwen3-VL-4B-Instruct" | |
| ) | |
| # --- Event Handlers --- | |
| image_submit.click(fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| video_submit.click(fn=generate_video, | |
| inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| pdf_submit.click(fn=generate_pdf, | |
| inputs=[model_choice, pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| gif_submit.click(fn=generate_gif, | |
| inputs=[model_choice, gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| caption_submit.click(fn=generate_caption, | |
| inputs=[model_choice, caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info]) | |
| prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info]) | |
| next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |