Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import cv2
|
| 3 |
-
import numpy as np
|
| 4 |
-
import time
|
| 5 |
-
import torch
|
| 6 |
-
import spaces
|
| 7 |
-
from threading import Thread
|
| 8 |
-
from PIL import Image
|
| 9 |
from transformers import (
|
| 10 |
AutoProcessor,
|
| 11 |
Qwen2_5_VLForConditionalGeneration,
|
| 12 |
TextIteratorStreamer,
|
| 13 |
-
AutoTokenizer,
|
| 14 |
AutoModelForCausalLM,
|
|
|
|
| 15 |
)
|
| 16 |
from transformers.image_utils import load_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
| 18 |
# Progress Bar Helper
|
|
|
|
| 19 |
def progress_bar_html(label: str) -> str:
|
| 20 |
"""
|
| 21 |
Returns an HTML snippet for a thin progress bar with a label.
|
|
@@ -36,7 +38,9 @@ def progress_bar_html(label: str) -> str:
|
|
| 36 |
</style>
|
| 37 |
'''
|
| 38 |
|
| 39 |
-
#
|
|
|
|
|
|
|
| 40 |
def downsample_video(video_path):
|
| 41 |
"""
|
| 42 |
Downsamples the video to 10 evenly spaced frames.
|
|
@@ -62,7 +66,9 @@ def downsample_video(video_path):
|
|
| 62 |
vidcap.release()
|
| 63 |
return frames
|
| 64 |
|
| 65 |
-
#
|
|
|
|
|
|
|
| 66 |
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 67 |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
|
| 68 |
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
@@ -71,8 +77,10 @@ vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 71 |
torch_dtype=torch.bfloat16
|
| 72 |
).to("cuda").eval()
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
|
| 77 |
tg_model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
TG_MODEL_ID,
|
|
@@ -81,38 +89,37 @@ tg_model = AutoModelForCausalLM.from_pretrained(
|
|
| 81 |
)
|
| 82 |
tg_model.eval()
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
@spaces.GPU
|
| 85 |
def model_inference(input_dict, history):
|
| 86 |
text = input_dict["text"]
|
| 87 |
-
files = input_dict
|
| 88 |
|
| 89 |
-
# Video inference branch
|
| 90 |
if text.strip().lower().startswith("@video-infer"):
|
| 91 |
-
# Remove the tag from the query.
|
| 92 |
text = text[len("@video-infer"):].strip()
|
| 93 |
if not files:
|
| 94 |
-
gr.Error("Please upload a video file along with your @video-infer query.")
|
| 95 |
return
|
| 96 |
-
# Assume the first file is a video.
|
| 97 |
video_path = files[0]
|
| 98 |
frames = downsample_video(video_path)
|
| 99 |
if not frames:
|
| 100 |
-
gr.Error("Could not process video.")
|
| 101 |
return
|
| 102 |
-
# Build messages
|
| 103 |
messages = [
|
| 104 |
{
|
| 105 |
"role": "user",
|
| 106 |
"content": [{"type": "text", "text": text}]
|
| 107 |
}
|
| 108 |
]
|
| 109 |
-
# Append each frame with a timestamp label.
|
| 110 |
for image, timestamp in frames:
|
| 111 |
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 112 |
messages[0]["content"].append({"type": "image", "image": image})
|
| 113 |
-
# Collect
|
| 114 |
video_images = [image for image, _ in frames]
|
| 115 |
-
# Prepare the prompt.
|
| 116 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 117 |
inputs = processor(
|
| 118 |
text=[prompt],
|
|
@@ -120,7 +127,6 @@ def model_inference(input_dict, history):
|
|
| 120 |
return_tensors="pt",
|
| 121 |
padding=True,
|
| 122 |
).to("cuda")
|
| 123 |
-
# Set up streaming generation.
|
| 124 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 125 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 126 |
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
|
|
@@ -133,12 +139,20 @@ def model_inference(input_dict, history):
|
|
| 133 |
yield buffer
|
| 134 |
return
|
| 135 |
|
| 136 |
-
#
|
| 137 |
if files:
|
|
|
|
| 138 |
if len(files) > 1:
|
| 139 |
images = [load_image(image) for image in files]
|
| 140 |
elif len(files) == 1:
|
| 141 |
images = [load_image(files[0])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
messages = [
|
| 143 |
{
|
| 144 |
"role": "user",
|
|
@@ -167,34 +181,37 @@ def model_inference(input_dict, history):
|
|
| 167 |
yield buffer
|
| 168 |
return
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 174 |
-
generation_kwargs = {
|
| 175 |
-
"input_ids": input_ids,
|
| 176 |
-
"streamer": streamer,
|
| 177 |
-
"max_new_tokens": 1024,
|
| 178 |
-
"do_sample": True,
|
| 179 |
-
"temperature": 0.7,
|
| 180 |
-
"top_p": 0.9,
|
| 181 |
-
}
|
| 182 |
-
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
|
| 183 |
-
thread.start()
|
| 184 |
-
buffer = ""
|
| 185 |
-
yield progress_bar_html("Processing text with Ganymede Model")
|
| 186 |
-
for new_text in streamer:
|
| 187 |
-
buffer += new_text
|
| 188 |
-
time.sleep(0.01)
|
| 189 |
-
yield buffer
|
| 190 |
return
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
#
|
|
|
|
|
|
|
| 196 |
examples = [
|
| 197 |
-
[{"text": "
|
| 198 |
[{"text": "Tell me a story about a brave knight."}],
|
| 199 |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
|
| 200 |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import (
|
| 3 |
AutoProcessor,
|
| 4 |
Qwen2_5_VLForConditionalGeneration,
|
| 5 |
TextIteratorStreamer,
|
|
|
|
| 6 |
AutoModelForCausalLM,
|
| 7 |
+
AutoTokenizer,
|
| 8 |
)
|
| 9 |
from transformers.image_utils import load_image
|
| 10 |
+
from threading import Thread
|
| 11 |
+
import time
|
| 12 |
+
import torch
|
| 13 |
+
import spaces
|
| 14 |
+
import cv2
|
| 15 |
+
import numpy as np
|
| 16 |
+
from PIL import Image
|
| 17 |
|
| 18 |
+
# -----------------------
|
| 19 |
# Progress Bar Helper
|
| 20 |
+
# -----------------------
|
| 21 |
def progress_bar_html(label: str) -> str:
|
| 22 |
"""
|
| 23 |
Returns an HTML snippet for a thin progress bar with a label.
|
|
|
|
| 38 |
</style>
|
| 39 |
'''
|
| 40 |
|
| 41 |
+
# -----------------------
|
| 42 |
+
# Video Processing Helper
|
| 43 |
+
# -----------------------
|
| 44 |
def downsample_video(video_path):
|
| 45 |
"""
|
| 46 |
Downsamples the video to 10 evenly spaced frames.
|
|
|
|
| 66 |
vidcap.release()
|
| 67 |
return frames
|
| 68 |
|
| 69 |
+
# -----------------------
|
| 70 |
+
# Qwen2.5-VL Model (Multimodal)
|
| 71 |
+
# -----------------------
|
| 72 |
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 73 |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
|
| 74 |
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 77 |
torch_dtype=torch.bfloat16
|
| 78 |
).to("cuda").eval()
|
| 79 |
|
| 80 |
+
# -----------------------
|
| 81 |
+
# Text Generation Setup (DeepHermes)
|
| 82 |
+
# -----------------------
|
| 83 |
+
TG_MODEL_ID = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
|
| 84 |
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
|
| 85 |
tg_model = AutoModelForCausalLM.from_pretrained(
|
| 86 |
TG_MODEL_ID,
|
|
|
|
| 89 |
)
|
| 90 |
tg_model.eval()
|
| 91 |
|
| 92 |
+
# -----------------------
|
| 93 |
+
# Main Inference Function
|
| 94 |
+
# -----------------------
|
| 95 |
@spaces.GPU
|
| 96 |
def model_inference(input_dict, history):
|
| 97 |
text = input_dict["text"]
|
| 98 |
+
files = input_dict["files"]
|
| 99 |
|
| 100 |
+
# Video inference branch
|
| 101 |
if text.strip().lower().startswith("@video-infer"):
|
|
|
|
| 102 |
text = text[len("@video-infer"):].strip()
|
| 103 |
if not files:
|
| 104 |
+
yield gr.Error("Please upload a video file along with your @video-infer query.")
|
| 105 |
return
|
|
|
|
| 106 |
video_path = files[0]
|
| 107 |
frames = downsample_video(video_path)
|
| 108 |
if not frames:
|
| 109 |
+
yield gr.Error("Could not process video.")
|
| 110 |
return
|
| 111 |
+
# Build messages starting with the text prompt and then add each frame with its timestamp.
|
| 112 |
messages = [
|
| 113 |
{
|
| 114 |
"role": "user",
|
| 115 |
"content": [{"type": "text", "text": text}]
|
| 116 |
}
|
| 117 |
]
|
|
|
|
| 118 |
for image, timestamp in frames:
|
| 119 |
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 120 |
messages[0]["content"].append({"type": "image", "image": image})
|
| 121 |
+
# Collect images from the frames.
|
| 122 |
video_images = [image for image, _ in frames]
|
|
|
|
| 123 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 124 |
inputs = processor(
|
| 125 |
text=[prompt],
|
|
|
|
| 127 |
return_tensors="pt",
|
| 128 |
padding=True,
|
| 129 |
).to("cuda")
|
|
|
|
| 130 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 131 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 132 |
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
|
|
|
|
| 139 |
yield buffer
|
| 140 |
return
|
| 141 |
|
| 142 |
+
# Multimodal branch if images are provided (non-video)
|
| 143 |
if files:
|
| 144 |
+
# If more than one file is provided, load them as images.
|
| 145 |
if len(files) > 1:
|
| 146 |
images = [load_image(image) for image in files]
|
| 147 |
elif len(files) == 1:
|
| 148 |
images = [load_image(files[0])]
|
| 149 |
+
else:
|
| 150 |
+
images = []
|
| 151 |
+
|
| 152 |
+
if text == "":
|
| 153 |
+
yield gr.Error("Please input a text query along with the image(s).")
|
| 154 |
+
return
|
| 155 |
+
|
| 156 |
messages = [
|
| 157 |
{
|
| 158 |
"role": "user",
|
|
|
|
| 181 |
yield buffer
|
| 182 |
return
|
| 183 |
|
| 184 |
+
# Text-only branch using DeepHermes text generation.
|
| 185 |
+
if text.strip() == "":
|
| 186 |
+
yield gr.Error("Please input a query.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
return
|
| 188 |
|
| 189 |
+
input_ids = tg_tokenizer(text, return_tensors="pt").to(tg_model.device)
|
| 190 |
+
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 191 |
+
generation_kwargs = {
|
| 192 |
+
"input_ids": input_ids,
|
| 193 |
+
"streamer": streamer,
|
| 194 |
+
"max_new_tokens": 2048,
|
| 195 |
+
"do_sample": True,
|
| 196 |
+
"top_p": 0.9,
|
| 197 |
+
"top_k": 50,
|
| 198 |
+
"temperature": 0.6,
|
| 199 |
+
"repetition_penalty": 1.2,
|
| 200 |
+
}
|
| 201 |
+
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
|
| 202 |
+
thread.start()
|
| 203 |
+
buffer = ""
|
| 204 |
+
yield progress_bar_html("Processing text with DeepHermes Model")
|
| 205 |
+
for new_text in streamer:
|
| 206 |
+
buffer += new_text
|
| 207 |
+
time.sleep(0.01)
|
| 208 |
+
yield buffer
|
| 209 |
|
| 210 |
+
# -----------------------
|
| 211 |
+
# Gradio Chat Interface
|
| 212 |
+
# -----------------------
|
| 213 |
examples = [
|
| 214 |
+
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
|
| 215 |
[{"text": "Tell me a story about a brave knight."}],
|
| 216 |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
|
| 217 |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
|