prithivMLmods commited on
Commit
c11107a
·
verified ·
1 Parent(s): 9f4c2ac

update app

Browse files
Files changed (1) hide show
  1. app.py +128 -115
app.py CHANGED
@@ -5,6 +5,7 @@ import json
5
  import time
6
  import asyncio
7
  from threading import Thread
 
8
 
9
  import gradio as gr
10
  import spaces
@@ -15,14 +16,75 @@ import cv2
15
 
16
  from transformers import (
17
  Qwen2_5_VLForConditionalGeneration,
18
- AutoModel,
19
  AutoTokenizer,
20
  AutoProcessor,
21
  TextIteratorStreamer,
22
  )
23
  from transformers.image_utils import load_image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- # Constants for text generation
26
  MAX_MAX_NEW_TOKENS = 2048
27
  DEFAULT_MAX_NEW_TOKENS = 1024
28
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
@@ -47,19 +109,19 @@ model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
47
  torch_dtype=torch.float16
48
  ).to(device).eval()
49
 
50
- # Load Qwen2.5-VL-7B-Abliterated-Caption-it
51
- MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
52
  processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
53
- model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
54
  MODEL_ID_Q,
55
  trust_remote_code=True,
56
  torch_dtype=torch.float16
57
  ).to(device).eval()
58
 
59
- # Load Lumian2-VLR-7B-Thinking
60
- MODEL_ID_Y = "prithivMLmods/Lumian2-VLR-7B-Thinking"
61
  processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
62
- model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained(
63
  MODEL_ID_Y,
64
  trust_remote_code=True,
65
  torch_dtype=torch.float16
@@ -74,7 +136,8 @@ def downsample_video(video_path):
74
  total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
75
  fps = vidcap.get(cv2.CAP_PROP_FPS)
76
  frames = []
77
- frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
 
78
  for i in frame_indices:
79
  vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
80
  success, image = vidcap.read()
@@ -95,20 +158,15 @@ def generate_image(model_name: str, text: str, image: Image.Image,
95
  repetition_penalty: float = 1.2):
96
  """
97
  Generates responses using the selected model for image input.
98
- Yields raw text and Markdown-formatted text.
99
  """
100
  if model_name == "Qwen2.5-VL-7B-Instruct":
101
- processor = processor_m
102
- model = model_m
103
  elif model_name == "Qwen2.5-VL-3B-Instruct":
104
- processor = processor_x
105
- model = model_x
106
- elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
107
- processor = processor_q
108
- model = model_q
109
- elif model_name == "Lumian2-VLR-7B-Thinking":
110
- processor = processor_y
111
- model = model_y
112
  else:
113
  yield "Invalid model selected.", "Invalid model selected."
114
  return
@@ -117,21 +175,11 @@ def generate_image(model_name: str, text: str, image: Image.Image,
117
  yield "Please upload an image.", "Please upload an image."
118
  return
119
 
120
- messages = [{
121
- "role": "user",
122
- "content": [
123
- {"type": "image", "image": image},
124
- {"type": "text", "text": text},
125
- ]
126
- }]
127
  prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
128
  inputs = processor(
129
- text=[prompt_full],
130
- images=[image],
131
- return_tensors="pt",
132
- padding=True,
133
- truncation=False,
134
- max_length=MAX_INPUT_TOKEN_LENGTH
135
  ).to(device)
136
  streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
137
  generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
@@ -152,20 +200,15 @@ def generate_video(model_name: str, text: str, video_path: str,
152
  repetition_penalty: float = 1.2):
153
  """
154
  Generates responses using the selected model for video input.
155
- Yields raw text and Markdown-formatted text.
156
  """
157
  if model_name == "Qwen2.5-VL-7B-Instruct":
158
- processor = processor_m
159
- model = model_m
160
  elif model_name == "Qwen2.5-VL-3B-Instruct":
161
- processor = processor_x
162
- model = model_x
163
- elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
164
- processor = processor_q
165
- model = model_q
166
- elif model_name == "Lumian2-VLR-7B-Thinking":
167
- processor = processor_y
168
- model = model_y
169
  else:
170
  yield "Invalid model selected.", "Invalid model selected."
171
  return
@@ -174,43 +217,38 @@ def generate_video(model_name: str, text: str, video_path: str,
174
  yield "Please upload a video.", "Please upload a video."
175
  return
176
 
177
- frames = downsample_video(video_path)
178
- messages = [
179
- {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
180
- {"role": "user", "content": [{"type": "text", "text": text}]}
181
- ]
182
- for frame in frames:
183
- image, timestamp = frame
184
- messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
185
- messages[1]["content"].append({"type": "image", "image": image})
186
- inputs = processor.apply_chat_template(
187
- messages,
188
- tokenize=True,
189
- add_generation_prompt=True,
190
- return_dict=True,
191
- return_tensors="pt",
192
- truncation=False,
193
- max_length=MAX_INPUT_TOKEN_LENGTH
194
  ).to(device)
195
  streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
196
  generation_kwargs = {
197
- **inputs,
198
- "streamer": streamer,
199
- "max_new_tokens": max_new_tokens,
200
- "do_sample": True,
201
- "temperature": temperature,
202
- "top_p": top_p,
203
- "top_k": top_k,
204
- "repetition_penalty": repetition_penalty,
205
  }
206
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
207
  thread.start()
208
  buffer = ""
209
  for new_text in streamer:
210
  buffer += new_text
 
211
  time.sleep(0.01)
212
  yield buffer, buffer
213
 
 
214
  # Define examples for image and video inference
215
  image_examples = [
216
  ["Explain the content in detail.", "images/D.jpg"],
@@ -228,42 +266,32 @@ video_examples = [
228
  ]
229
 
230
  css = """
231
- .submit-btn {
232
- background-color: #2980b9 !important;
233
- color: white !important;
234
- }
235
- .submit-btn:hover {
236
- background-color: #3498db !important;
237
  }
238
- .canvas-output {
239
- border: 2px solid #4682B4;
240
- border-radius: 10px;
241
- padding: 20px;
242
  }
243
  """
244
 
245
  # Create the Gradio Interface
246
- with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
247
- gr.Markdown("# **[Qwen2.5-VL-Outpost](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
248
  with gr.Row():
249
- with gr.Column():
250
  with gr.Tabs():
251
  with gr.TabItem("Image Inference"):
252
  image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
253
  image_upload = gr.Image(type="pil", label="Image", height=290)
254
- image_submit = gr.Button("Submit", elem_classes="submit-btn")
255
- gr.Examples(
256
- examples=image_examples,
257
- inputs=[image_query, image_upload]
258
- )
259
  with gr.TabItem("Video Inference"):
260
  video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...")
261
  video_upload = gr.Video(label="Video", height=290)
262
- video_submit = gr.Button("Submit", elem_classes="submit-btn")
263
- gr.Examples(
264
- examples=video_examples,
265
- inputs=[video_query, video_upload]
266
- )
267
  with gr.Accordion("Advanced options", open=False):
268
  max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
269
  temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
@@ -271,33 +299,18 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
271
  top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
272
  repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
273
 
274
- with gr.Column():
275
- with gr.Column(elem_classes="canvas-output"):
276
- gr.Markdown("## Output")
277
- output = gr.Textbox(label="Raw Output", interactive=False, lines=5, show_copy_button=True)
278
-
279
- with gr.Accordion("(Result.md)", open=False):
280
- markdown_output = gr.Markdown()
281
 
282
  model_choice = gr.Radio(
283
- choices=["Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct", "Lumian2-VLR-7B-Thinking", "Qwen2.5-VL-7B-Abliterated-Caption-it"],
284
  label="Select Model",
285
- value="Qwen2.5-VL-7B-Instruct"
286
- )
287
- gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
288
-
289
- gr.Markdown(
290
- """
291
- > [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support.
292
- >
293
- > [Qwen2.5-VL-7B-Abliterated-Caption-it](prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship.
294
- """
295
  )
296
 
297
- gr.Markdown("> [Lumian2-VLR-7B-Thinking](https://huggingface.co/prithivMLmods/Lumian2-VLR-7B-Thinking): The Lumian2-VLR-7B-Thinking model is a high-fidelity vision-language reasoning (experimental model) system designed for fine-grained multimodal understanding. Built on Qwen2.5-VL-7B-Instruct, this model enhances image captioning, sampled video reasoning, and document comprehension through explicit grounded reasoning. It produces structured reasoning traces aligned with visual coordinates, enabling explainable multimodal reasoning.")
298
-
299
- gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
300
-
301
  image_submit.click(
302
  fn=generate_image,
303
  inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
@@ -310,4 +323,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
310
  )
311
 
312
  if __name__ == "__main__":
313
- demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
 
5
  import time
6
  import asyncio
7
  from threading import Thread
8
+ from typing import Iterable
9
 
10
  import gradio as gr
11
  import spaces
 
16
 
17
  from transformers import (
18
  Qwen2_5_VLForConditionalGeneration,
19
+ Qwen3VLForConditionalGeneration,
20
  AutoTokenizer,
21
  AutoProcessor,
22
  TextIteratorStreamer,
23
  )
24
  from transformers.image_utils import load_image
25
+ from gradio.themes import Soft
26
+ from gradio.themes.utils import colors, fonts, sizes
27
+
28
+ colors.thistle = colors.Color(
29
+ name="thistle",
30
+ c50="#F9F5F9", c100="#F0E8F1", c200="#E7DBE8", c300="#DECEE0",
31
+ c400="#D2BFD8", c500="#D8BFD8", c600="#B59CB7", c700="#927996",
32
+ c800="#6F5675", c900="#4C3454", c950="#291233",
33
+ )
34
+
35
+ class ThistleTheme(Soft):
36
+ def __init__(
37
+ self,
38
+ *,
39
+ primary_hue: colors.Color | str = colors.gray,
40
+ secondary_hue: colors.Color | str = colors.thistle,
41
+ neutral_hue: colors.Color | str = colors.slate,
42
+ text_size: sizes.Size | str = sizes.text_lg,
43
+ font: fonts.Font | str | Iterable[fonts.Font | str] = (
44
+ fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
45
+ ),
46
+ font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
47
+ fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
48
+ ),
49
+ ):
50
+ super().__init__(
51
+ primary_hue=primary_hue,
52
+ secondary_hue=secondary_hue,
53
+ neutral_hue=neutral_hue,
54
+ text_size=text_size,
55
+ font=font,
56
+ font_mono=font_mono,
57
+ )
58
+ super().set(
59
+ background_fill_primary="*primary_50",
60
+ background_fill_primary_dark="*primary_900",
61
+ body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
62
+ body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
63
+ button_primary_text_color="black",
64
+ button_primary_text_color_hover="white",
65
+ button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_400)",
66
+ button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_600)",
67
+ button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
68
+ button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
69
+ button_secondary_text_color="black",
70
+ button_secondary_text_color_hover="white",
71
+ button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
72
+ button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
73
+ button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
74
+ button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
75
+ slider_color="*secondary_300",
76
+ slider_color_dark="*secondary_600",
77
+ block_title_text_weight="600",
78
+ block_border_width="3px",
79
+ block_shadow="*shadow_drop_lg",
80
+ button_primary_shadow="*shadow_drop_lg",
81
+ button_large_padding="11px",
82
+ color_accent_soft="*primary_100",
83
+ block_label_background_fill="*primary_200",
84
+ )
85
+
86
+ thistle_theme = ThistleTheme()
87
 
 
88
  MAX_MAX_NEW_TOKENS = 2048
89
  DEFAULT_MAX_NEW_TOKENS = 1024
90
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
 
109
  torch_dtype=torch.float16
110
  ).to(device).eval()
111
 
112
+ # Load Qwen3-VL-4B-Instruct
113
+ MODEL_ID_Q = "Qwen/Qwen3-VL-4B-Instruct"
114
  processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
115
+ model_q = Qwen3VLForConditionalGeneration.from_pretrained(
116
  MODEL_ID_Q,
117
  trust_remote_code=True,
118
  torch_dtype=torch.float16
119
  ).to(device).eval()
120
 
121
+ # Load Qwen3-VL-8B-Instruct
122
+ MODEL_ID_Y = "Qwen/Qwen3-VL-8B-Instruct"
123
  processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
124
+ model_y = Qwen3VLForConditionalGeneration.from_pretrained(
125
  MODEL_ID_Y,
126
  trust_remote_code=True,
127
  torch_dtype=torch.float16
 
136
  total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
137
  fps = vidcap.get(cv2.CAP_PROP_FPS)
138
  frames = []
139
+ # Use a maximum of 10 frames to avoid excessive memory usage
140
+ frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
141
  for i in frame_indices:
142
  vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
143
  success, image = vidcap.read()
 
158
  repetition_penalty: float = 1.2):
159
  """
160
  Generates responses using the selected model for image input.
 
161
  """
162
  if model_name == "Qwen2.5-VL-7B-Instruct":
163
+ processor, model = processor_m, model_m
 
164
  elif model_name == "Qwen2.5-VL-3B-Instruct":
165
+ processor, model = processor_x, model_x
166
+ elif model_name == "Qwen3-VL-4B-Instruct":
167
+ processor, model = processor_q, model_q
168
+ elif model_name == "Qwen3-VL-8B-Instruct":
169
+ processor, model = processor_y, model_y
 
 
 
170
  else:
171
  yield "Invalid model selected.", "Invalid model selected."
172
  return
 
175
  yield "Please upload an image.", "Please upload an image."
176
  return
177
 
178
+ messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
 
 
 
 
 
 
179
  prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
180
  inputs = processor(
181
+ text=[prompt_full], images=[image], return_tensors="pt", padding=True,
182
+ truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
 
 
 
 
183
  ).to(device)
184
  streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
185
  generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
 
200
  repetition_penalty: float = 1.2):
201
  """
202
  Generates responses using the selected model for video input.
 
203
  """
204
  if model_name == "Qwen2.5-VL-7B-Instruct":
205
+ processor, model = processor_m, model_m
 
206
  elif model_name == "Qwen2.5-VL-3B-Instruct":
207
+ processor, model = processor_x, model_x
208
+ elif model_name == "Qwen3-VL-4B-Instruct":
209
+ processor, model = processor_q, model_q
210
+ elif model_name == "Qwen3-VL-8B-Instruct":
211
+ processor, model = processor_y, model_y
 
 
 
212
  else:
213
  yield "Invalid model selected.", "Invalid model selected."
214
  return
 
217
  yield "Please upload a video.", "Please upload a video."
218
  return
219
 
220
+ frames_with_ts = downsample_video(video_path)
221
+ if not frames_with_ts:
222
+ yield "Could not process video.", "Could not process video."
223
+ return
224
+
225
+ messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
226
+ images_for_processor = []
227
+ for frame, timestamp in frames_with_ts:
228
+ messages[0]["content"].append({"type": "image"})
229
+ images_for_processor.append(frame)
230
+
231
+ prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
232
+ inputs = processor(
233
+ text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True,
234
+ truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
 
 
235
  ).to(device)
236
  streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
237
  generation_kwargs = {
238
+ **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens,
239
+ "do_sample": True, "temperature": temperature, "top_p": top_p,
240
+ "top_k": top_k, "repetition_penalty": repetition_penalty,
 
 
 
 
 
241
  }
242
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
243
  thread.start()
244
  buffer = ""
245
  for new_text in streamer:
246
  buffer += new_text
247
+ buffer = buffer.replace("<|im_end|>", "")
248
  time.sleep(0.01)
249
  yield buffer, buffer
250
 
251
+
252
  # Define examples for image and video inference
253
  image_examples = [
254
  ["Explain the content in detail.", "images/D.jpg"],
 
266
  ]
267
 
268
  css = """
269
+ #main-title h1 {
270
+ font-size: 2.3em !important;
 
 
 
 
271
  }
272
+ #output-title h2 {
273
+ font-size: 2.1em !important;
 
 
274
  }
275
  """
276
 
277
  # Create the Gradio Interface
278
+ with gr.Blocks(css=css, theme=thistle_theme) as demo:
279
+ gr.Markdown("# **Qwen3-VL-Outpost**", elem_id="main-title")
280
  with gr.Row():
281
+ with gr.Column(scale=2):
282
  with gr.Tabs():
283
  with gr.TabItem("Image Inference"):
284
  image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
285
  image_upload = gr.Image(type="pil", label="Image", height=290)
286
+ image_submit = gr.Button("Submit", variant="primary")
287
+ gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
288
+
 
 
289
  with gr.TabItem("Video Inference"):
290
  video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...")
291
  video_upload = gr.Video(label="Video", height=290)
292
+ video_submit = gr.Button("Submit", variant="primary")
293
+ gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
294
+
 
 
295
  with gr.Accordion("Advanced options", open=False):
296
  max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
297
  temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
 
299
  top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
300
  repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
301
 
302
+ with gr.Column(scale=3):
303
+ gr.Markdown("## Output", elem_id="output-title")
304
+ output = gr.Textbox(label="Raw Output", interactive=False, lines=14, show_copy_button=True)
305
+ with gr.Accordion("(Result.md)", open=False):
306
+ markdown_output = gr.Markdown()
 
 
307
 
308
  model_choice = gr.Radio(
309
+ choices=["Qwen3-VL-4B-Instruct", "Qwen3-VL-8B-Instruct", "Qwen2.5-VL-3B-Instruct", "Qwen2.5-VL-7B-Instruct"],
310
  label="Select Model",
311
+ value="Qwen3-VL-4B-Instruct"
 
 
 
 
 
 
 
 
 
312
  )
313
 
 
 
 
 
314
  image_submit.click(
315
  fn=generate_image,
316
  inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
 
323
  )
324
 
325
  if __name__ == "__main__":
326
+ demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)