Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,6 +26,9 @@ from transformers import (
|
|
| 26 |
|
| 27 |
# --- Constants and Model Setup ---
|
| 28 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
|
|
|
|
|
|
|
|
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
|
| 31 |
# --- Prompts for Different Tasks ---
|
|
@@ -78,57 +81,64 @@ model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 78 |
MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
|
| 79 |
).to(device).eval()
|
| 80 |
|
| 81 |
-
|
|
|
|
| 82 |
"""
|
| 83 |
-
|
| 84 |
-
|
| 85 |
"""
|
| 86 |
-
return f'''
|
| 87 |
-
<div style="display: flex; align-items: center;">
|
| 88 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 89 |
-
<div style="width: 110px; height: 5px; background-color: #AFEEEE; border-radius: 2px; overflow: hidden;">
|
| 90 |
-
<div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
|
| 91 |
-
</div>
|
| 92 |
-
</div>
|
| 93 |
-
<style>
|
| 94 |
-
@keyframes loading {{
|
| 95 |
-
0% {{ transform: translateX(-100%); }}
|
| 96 |
-
100% {{ transform: translateX(100%); }}
|
| 97 |
-
}}
|
| 98 |
-
</style>
|
| 99 |
-
'''
|
| 100 |
-
|
| 101 |
-
# --- Utility Functions ---
|
| 102 |
-
def layoutjson2md(layout_data: List[Dict]) -> str:
|
| 103 |
-
"""Converts the structured JSON from Layout Analysis into formatted Markdown."""
|
| 104 |
markdown_lines = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
try:
|
| 106 |
-
#
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
for item in sorted_items:
|
| 109 |
-
category = item.get('category', '')
|
| 110 |
text = item.get('text', '')
|
| 111 |
-
if not text:
|
|
|
|
| 112 |
|
| 113 |
-
if category == 'Title':
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
elif category == 'Table':
|
| 116 |
-
# Handle structured table JSON
|
| 117 |
if isinstance(text, dict) and 'header' in text and 'rows' in text:
|
| 118 |
header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
|
| 119 |
separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
|
| 120 |
rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
|
| 121 |
markdown_lines.extend([header, separator] + rows)
|
| 122 |
markdown_lines.append("\n")
|
| 123 |
-
else:
|
| 124 |
markdown_lines.append(f"{text}\n")
|
| 125 |
else:
|
| 126 |
-
|
|
|
|
| 127 |
except Exception as e:
|
| 128 |
print(f"Error converting to markdown: {e}")
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
return "\n".join(markdown_lines)
|
| 131 |
|
|
|
|
| 132 |
# --- Core Application Logic ---
|
| 133 |
@spaces.GPU
|
| 134 |
def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int):
|
|
@@ -158,11 +168,10 @@ def process_document_stream(model_name: str, task_choice: str, image: Image.Imag
|
|
| 158 |
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
| 159 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 160 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 161 |
-
|
| 162 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 163 |
thread.start()
|
| 164 |
|
| 165 |
-
|
| 166 |
# 4. Stream raw output to the UI in real-time
|
| 167 |
buffer = ""
|
| 168 |
for new_text in streamer:
|
|
@@ -179,24 +188,32 @@ def process_document_stream(model_name: str, task_choice: str, image: Image.Imag
|
|
| 179 |
try:
|
| 180 |
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
|
| 181 |
if not json_match:
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
json_str = json_match.group(1)
|
| 185 |
layout_data = json.loads(json_str)
|
| 186 |
markdown_content = layoutjson2md(layout_data)
|
| 187 |
-
|
| 188 |
yield buffer, markdown_content, layout_data
|
| 189 |
except Exception as e:
|
| 190 |
-
error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}
|
| 191 |
error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
|
| 192 |
yield buffer, error_md, error_json
|
| 193 |
|
|
|
|
| 194 |
# --- Gradio UI Definition ---
|
| 195 |
def create_gradio_interface():
|
| 196 |
"""Builds and returns the Gradio web interface."""
|
| 197 |
css = """
|
| 198 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 199 |
-
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
|
| 200 |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 201 |
"""
|
| 202 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
|
@@ -208,15 +225,15 @@ def create_gradio_interface():
|
|
| 208 |
</p>
|
| 209 |
</div>
|
| 210 |
""")
|
| 211 |
-
|
| 212 |
with gr.Row():
|
| 213 |
# Left Column (Inputs)
|
| 214 |
with gr.Column(scale=1):
|
| 215 |
model_choice = gr.Dropdown(
|
| 216 |
-
choices=["Camel-Doc-OCR-080125",
|
| 217 |
-
"MonkeyOCR-Recognition",
|
| 218 |
"olmOCR-7B-0725",
|
| 219 |
-
"Nanonets-OCR-s",
|
| 220 |
"Megalodon-OCR-Sync-0713"
|
| 221 |
],
|
| 222 |
label="Select Model", value="Nanonets-OCR-s"
|
|
@@ -228,7 +245,7 @@ def create_gradio_interface():
|
|
| 228 |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
| 229 |
with gr.Accordion("Advanced Settings", open=False):
|
| 230 |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
|
| 231 |
-
|
| 232 |
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
| 233 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 234 |
|
|
@@ -242,33 +259,32 @@ def create_gradio_interface():
|
|
| 242 |
examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
|
| 243 |
inputs=image_input,
|
| 244 |
label="Examples"
|
| 245 |
-
)
|
| 246 |
-
with gr.Tab("📰
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
with gr.Tab("📋 Layout Analysis Results"):
|
| 251 |
json_output = gr.JSON(label="Structured Layout Data (JSON)")
|
| 252 |
-
|
| 253 |
# Event Handlers
|
| 254 |
def clear_all_outputs():
|
| 255 |
return None, "Raw output will appear here.", "Formatted results will appear here.", None
|
| 256 |
|
| 257 |
process_btn.click(
|
| 258 |
fn=process_document_stream,
|
| 259 |
-
inputs=[model_choice,
|
| 260 |
-
task_choice,
|
| 261 |
-
image_input,
|
| 262 |
max_new_tokens],
|
| 263 |
-
outputs=[raw_output_stream,
|
| 264 |
-
markdown_output,
|
| 265 |
json_output]
|
| 266 |
)
|
| 267 |
clear_btn.click(
|
| 268 |
clear_all_outputs,
|
| 269 |
-
outputs=[image_input,
|
| 270 |
-
raw_output_stream,
|
| 271 |
-
markdown_output,
|
| 272 |
json_output]
|
| 273 |
)
|
| 274 |
return demo
|
|
|
|
| 26 |
|
| 27 |
# --- Constants and Model Setup ---
|
| 28 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 29 |
+
# Note: The following line correctly falls back to CPU if CUDA is not available.
|
| 30 |
+
# The "RuntimeError: CUDA driver initialization failed" is an environment issue,
|
| 31 |
+
# meaning the code is being run where a GPU is expected but not found/configured.
|
| 32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
|
| 34 |
# --- Prompts for Different Tasks ---
|
|
|
|
| 81 |
MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
|
| 82 |
).to(device).eval()
|
| 83 |
|
| 84 |
+
# --- Utility Functions ---
|
| 85 |
+
def layoutjson2md(layout_data: Any) -> str:
|
| 86 |
"""
|
| 87 |
+
FIXED: Converts the structured JSON from Layout Analysis into formatted Markdown.
|
| 88 |
+
This version is robust against malformed JSON from the model.
|
| 89 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
markdown_lines = []
|
| 91 |
+
|
| 92 |
+
# If the model wraps the list in a dictionary, find and extract the list.
|
| 93 |
+
if isinstance(layout_data, dict):
|
| 94 |
+
found_list = None
|
| 95 |
+
for value in layout_data.values():
|
| 96 |
+
if isinstance(value, list):
|
| 97 |
+
found_list = value
|
| 98 |
+
break
|
| 99 |
+
if found_list is not None:
|
| 100 |
+
layout_data = found_list
|
| 101 |
+
else:
|
| 102 |
+
return "### Error: Could not find a list of layout items in the JSON object."
|
| 103 |
+
|
| 104 |
+
if not isinstance(layout_data, list):
|
| 105 |
+
return f"### Error: Expected a list of layout items, but received type {type(layout_data).__name__}."
|
| 106 |
+
|
| 107 |
try:
|
| 108 |
+
# Filter out any non-dictionary items and sort by reading order.
|
| 109 |
+
valid_items = [item for item in layout_data if isinstance(item, dict)]
|
| 110 |
+
sorted_items = sorted(valid_items, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
| 111 |
+
|
| 112 |
for item in sorted_items:
|
| 113 |
+
category = item.get('category', 'Text') # Default to 'Text' if no category
|
| 114 |
text = item.get('text', '')
|
| 115 |
+
if not text:
|
| 116 |
+
continue
|
| 117 |
|
| 118 |
+
if category == 'Title':
|
| 119 |
+
markdown_lines.append(f"# {text}\n")
|
| 120 |
+
elif category == 'Section-header':
|
| 121 |
+
markdown_lines.append(f"## {text}\n")
|
| 122 |
elif category == 'Table':
|
|
|
|
| 123 |
if isinstance(text, dict) and 'header' in text and 'rows' in text:
|
| 124 |
header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
|
| 125 |
separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
|
| 126 |
rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
|
| 127 |
markdown_lines.extend([header, separator] + rows)
|
| 128 |
markdown_lines.append("\n")
|
| 129 |
+
else: # Fallback for simple text or malformed tables
|
| 130 |
markdown_lines.append(f"{text}\n")
|
| 131 |
else:
|
| 132 |
+
markdown_lines.append(f"{text}\n")
|
| 133 |
+
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Error converting to markdown: {e}")
|
| 136 |
+
traceback.print_exc()
|
| 137 |
+
return "### Error: An unexpected error occurred while converting JSON to Markdown."
|
| 138 |
+
|
| 139 |
return "\n".join(markdown_lines)
|
| 140 |
|
| 141 |
+
|
| 142 |
# --- Core Application Logic ---
|
| 143 |
@spaces.GPU
|
| 144 |
def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int):
|
|
|
|
| 168 |
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
| 169 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 170 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 171 |
+
|
| 172 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 173 |
thread.start()
|
| 174 |
|
|
|
|
| 175 |
# 4. Stream raw output to the UI in real-time
|
| 176 |
buffer = ""
|
| 177 |
for new_text in streamer:
|
|
|
|
| 188 |
try:
|
| 189 |
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
|
| 190 |
if not json_match:
|
| 191 |
+
# If no JSON block is found, try to parse the whole buffer as a fallback.
|
| 192 |
+
try:
|
| 193 |
+
layout_data = json.loads(buffer)
|
| 194 |
+
markdown_content = layoutjson2md(layout_data)
|
| 195 |
+
yield buffer, markdown_content, layout_data
|
| 196 |
+
return
|
| 197 |
+
except json.JSONDecodeError:
|
| 198 |
+
raise ValueError("JSON object not found in the model's output.")
|
| 199 |
+
|
| 200 |
json_str = json_match.group(1)
|
| 201 |
layout_data = json.loads(json_str)
|
| 202 |
markdown_content = layoutjson2md(layout_data)
|
| 203 |
+
|
| 204 |
yield buffer, markdown_content, layout_data
|
| 205 |
except Exception as e:
|
| 206 |
+
error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}`\n\n**Raw Output:**\n```\n{buffer}\n```"
|
| 207 |
error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
|
| 208 |
yield buffer, error_md, error_json
|
| 209 |
|
| 210 |
+
|
| 211 |
# --- Gradio UI Definition ---
|
| 212 |
def create_gradio_interface():
|
| 213 |
"""Builds and returns the Gradio web interface."""
|
| 214 |
css = """
|
| 215 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 216 |
+
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
|
| 217 |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 218 |
"""
|
| 219 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
|
|
|
| 225 |
</p>
|
| 226 |
</div>
|
| 227 |
""")
|
| 228 |
+
|
| 229 |
with gr.Row():
|
| 230 |
# Left Column (Inputs)
|
| 231 |
with gr.Column(scale=1):
|
| 232 |
model_choice = gr.Dropdown(
|
| 233 |
+
choices=["Camel-Doc-OCR-080125",
|
| 234 |
+
"MonkeyOCR-Recognition",
|
| 235 |
"olmOCR-7B-0725",
|
| 236 |
+
"Nanonets-OCR-s",
|
| 237 |
"Megalodon-OCR-Sync-0713"
|
| 238 |
],
|
| 239 |
label="Select Model", value="Nanonets-OCR-s"
|
|
|
|
| 245 |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
| 246 |
with gr.Accordion("Advanced Settings", open=False):
|
| 247 |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
|
| 248 |
+
|
| 249 |
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
| 250 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 251 |
|
|
|
|
| 259 |
examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
|
| 260 |
inputs=image_input,
|
| 261 |
label="Examples"
|
| 262 |
+
)
|
| 263 |
+
with gr.Tab("📰 Formatted Result"):
|
| 264 |
+
markdown_output = gr.Markdown(label="Formatted Markdown")
|
| 265 |
+
|
|
|
|
| 266 |
with gr.Tab("📋 Layout Analysis Results"):
|
| 267 |
json_output = gr.JSON(label="Structured Layout Data (JSON)")
|
| 268 |
+
|
| 269 |
# Event Handlers
|
| 270 |
def clear_all_outputs():
|
| 271 |
return None, "Raw output will appear here.", "Formatted results will appear here.", None
|
| 272 |
|
| 273 |
process_btn.click(
|
| 274 |
fn=process_document_stream,
|
| 275 |
+
inputs=[model_choice,
|
| 276 |
+
task_choice,
|
| 277 |
+
image_input,
|
| 278 |
max_new_tokens],
|
| 279 |
+
outputs=[raw_output_stream,
|
| 280 |
+
markdown_output,
|
| 281 |
json_output]
|
| 282 |
)
|
| 283 |
clear_btn.click(
|
| 284 |
clear_all_outputs,
|
| 285 |
+
outputs=[image_input,
|
| 286 |
+
raw_output_stream,
|
| 287 |
+
markdown_output,
|
| 288 |
json_output]
|
| 289 |
)
|
| 290 |
return demo
|