Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import math
|
|
| 4 |
import os
|
| 5 |
import traceback
|
| 6 |
from io import BytesIO
|
| 7 |
-
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
import re
|
| 9 |
import time
|
| 10 |
from threading import Thread
|
|
@@ -21,6 +21,7 @@ import numpy as np
|
|
| 21 |
import torchvision.transforms as T
|
| 22 |
from torchvision.transforms.functional import InterpolationMode
|
| 23 |
|
|
|
|
| 24 |
from transformers import (
|
| 25 |
Qwen2_5_VLForConditionalGeneration,
|
| 26 |
Qwen2VLForConditionalGeneration,
|
|
@@ -42,144 +43,6 @@ from reportlab.lib.styles import getSampleStyleSheet
|
|
| 42 |
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
| 43 |
from reportlab.lib.units import inch
|
| 44 |
|
| 45 |
-
from gradio.themes import Soft
|
| 46 |
-
from gradio.themes.utils import colors, fonts, sizes
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# --- Theme and CSS Definition ---
|
| 50 |
-
|
| 51 |
-
# Define the Thistle color palette
|
| 52 |
-
colors.thistle = colors.Color(
|
| 53 |
-
name="thistle",
|
| 54 |
-
c50="#F9F5F9",
|
| 55 |
-
c100="#F0E8F1",
|
| 56 |
-
c200="#E7DBE8",
|
| 57 |
-
c300="#DECEE0",
|
| 58 |
-
c400="#D2BFD8",
|
| 59 |
-
c500="#D8BFD8", # Thistle base color
|
| 60 |
-
c600="#B59CB7",
|
| 61 |
-
c700="#927996",
|
| 62 |
-
c800="#6F5675",
|
| 63 |
-
c900="#4C3454",
|
| 64 |
-
c950="#291233",
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
colors.red_gray = colors.Color(
|
| 68 |
-
name="red_gray",
|
| 69 |
-
c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
|
| 70 |
-
c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
|
| 71 |
-
c800="#732d2d", c900="#5f2626", c950="#4d2020",
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
class ThistleTheme(Soft):
|
| 75 |
-
def __init__(
|
| 76 |
-
self,
|
| 77 |
-
*,
|
| 78 |
-
primary_hue: colors.Color | str = colors.gray,
|
| 79 |
-
secondary_hue: colors.Color | str = colors.thistle, # Use the new color
|
| 80 |
-
neutral_hue: colors.Color | str = colors.slate,
|
| 81 |
-
text_size: sizes.Size | str = sizes.text_lg,
|
| 82 |
-
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 83 |
-
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 84 |
-
),
|
| 85 |
-
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 86 |
-
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 87 |
-
),
|
| 88 |
-
):
|
| 89 |
-
super().__init__(
|
| 90 |
-
primary_hue=primary_hue,
|
| 91 |
-
secondary_hue=secondary_hue,
|
| 92 |
-
neutral_hue=neutral_hue,
|
| 93 |
-
text_size=text_size,
|
| 94 |
-
font=font,
|
| 95 |
-
font_mono=font_mono,
|
| 96 |
-
)
|
| 97 |
-
super().set(
|
| 98 |
-
background_fill_primary="*primary_50",
|
| 99 |
-
background_fill_primary_dark="*primary_900",
|
| 100 |
-
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 101 |
-
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 102 |
-
button_primary_text_color="black",
|
| 103 |
-
button_primary_text_color_hover="white",
|
| 104 |
-
button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)",
|
| 105 |
-
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 106 |
-
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 107 |
-
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 108 |
-
button_secondary_text_color="black",
|
| 109 |
-
button_secondary_text_color_hover="white",
|
| 110 |
-
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 111 |
-
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 112 |
-
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 113 |
-
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 114 |
-
slider_color="*secondary_400",
|
| 115 |
-
slider_color_dark="*secondary_600",
|
| 116 |
-
block_title_text_weight="600",
|
| 117 |
-
block_border_width="3px",
|
| 118 |
-
block_shadow="*shadow_drop_lg",
|
| 119 |
-
button_primary_shadow="*shadow_drop_lg",
|
| 120 |
-
button_large_padding="11px",
|
| 121 |
-
color_accent_soft="*primary_100",
|
| 122 |
-
block_label_background_fill="*primary_200",
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
# Instantiate the new theme
|
| 126 |
-
thistle_theme = ThistleTheme()
|
| 127 |
-
|
| 128 |
-
css = """
|
| 129 |
-
#main-title h1 {
|
| 130 |
-
font-size: 2.3em !important;
|
| 131 |
-
}
|
| 132 |
-
#output-title h2 {
|
| 133 |
-
font-size: 2.1em !important;
|
| 134 |
-
}
|
| 135 |
-
:root {
|
| 136 |
-
--color-grey-50: #f9fafb;
|
| 137 |
-
--banner-background: var(--secondary-400);
|
| 138 |
-
--banner-text-color: var(--primary-100);
|
| 139 |
-
--banner-background-dark: var(--secondary-800);
|
| 140 |
-
--banner-text-color-dark: var(--primary-100);
|
| 141 |
-
--banner-chrome-height: calc(16px + 43px);
|
| 142 |
-
--chat-chrome-height-wide-no-banner: 320px;
|
| 143 |
-
--chat-chrome-height-narrow-no-banner: 450px;
|
| 144 |
-
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
|
| 145 |
-
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
|
| 146 |
-
}
|
| 147 |
-
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
|
| 148 |
-
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
|
| 149 |
-
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
|
| 150 |
-
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
|
| 151 |
-
.toast-body { background-color: var(--color-grey-50); }
|
| 152 |
-
.html-container:has(.css-styles) { padding: 0; margin: 0; }
|
| 153 |
-
.css-styles { height: 0; }
|
| 154 |
-
.model-message { text-align: end; }
|
| 155 |
-
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
|
| 156 |
-
.user-input-container .multimodal-textbox{ border: none !important; }
|
| 157 |
-
.control-button { height: 51px; }
|
| 158 |
-
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
|
| 159 |
-
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
|
| 160 |
-
.opt-out-message { top: 8px; }
|
| 161 |
-
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
|
| 162 |
-
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
|
| 163 |
-
div.no-padding { padding: 0 !important; }
|
| 164 |
-
#gallery { min-height: 400px; }
|
| 165 |
-
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
|
| 166 |
-
@media (max-width: 1024px) {
|
| 167 |
-
.responsive-row { flex-direction: column; }
|
| 168 |
-
.model-message { text-align: start; font-size: 10px !important; }
|
| 169 |
-
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 170 |
-
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
|
| 171 |
-
}
|
| 172 |
-
@media (max-width: 400px) {
|
| 173 |
-
.responsive-row { flex-direction: column; }
|
| 174 |
-
.model-message { text-align: start; font-size: 10px !important; }
|
| 175 |
-
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 176 |
-
div.block.chatbot { max-height: 360px !important; }
|
| 177 |
-
}
|
| 178 |
-
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
|
| 179 |
-
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
|
| 180 |
-
"""
|
| 181 |
-
|
| 182 |
-
|
| 183 |
# --- Constants and Model Setup ---
|
| 184 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 185 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -551,11 +414,16 @@ def process_document_stream(
|
|
| 551 |
# --- Gradio UI Definition ---
|
| 552 |
def create_gradio_interface():
|
| 553 |
"""Builds and returns the Gradio web interface."""
|
| 554 |
-
|
| 555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
gr.HTML("""
|
| 557 |
<div class="title" style="text-align: center">
|
| 558 |
-
<h1
|
| 559 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
| 560 |
Tiny VLMs for Image Content Extraction and Understanding
|
| 561 |
</p>
|
|
@@ -572,14 +440,14 @@ def create_gradio_interface():
|
|
| 572 |
"Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)",
|
| 573 |
"LMM-R1-MGT-PerceReason(reason)", "OCRFlux-3B(ocr)", "TBAC-VLR1-3B(open-r1)",
|
| 574 |
"SmolVLM-500M-Instruct(smol)", "llava-onevision-qwen2-0.5b-ov-hf(mini)"],
|
| 575 |
-
label="Select Model", value= "
|
| 576 |
)
|
| 577 |
|
| 578 |
-
prompt_input = gr.Textbox(label="Query Input", placeholder="Enter
|
| 579 |
-
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload']
|
| 580 |
|
| 581 |
with gr.Accordion("Advanced Settings (PDF)", open=False):
|
| 582 |
-
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=
|
| 583 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 584 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 585 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
|
@@ -591,22 +459,22 @@ def create_gradio_interface():
|
|
| 591 |
alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
|
| 592 |
image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")
|
| 593 |
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
clear_btn = gr.Button("Clear All", variant="secondary", scale=1)
|
| 597 |
|
| 598 |
# Right Column (Outputs)
|
| 599 |
with gr.Column(scale=2):
|
| 600 |
with gr.Tabs() as tabs:
|
| 601 |
with gr.Tab("📝 Extracted Content"):
|
| 602 |
-
raw_output_stream = gr.Textbox(label="Raw Output Stream", interactive=False, lines=15, show_copy_button=True)
|
| 603 |
with gr.Row():
|
| 604 |
examples = gr.Examples(
|
| 605 |
examples=["examples/1.png", "examples/2.png", "examples/3.png",
|
| 606 |
"examples/4.png", "examples/5.png", "examples/6.png"],
|
| 607 |
inputs=image_input, label="Examples"
|
| 608 |
)
|
| 609 |
-
|
|
|
|
| 610 |
with gr.Tab("📰 README.md"):
|
| 611 |
with gr.Accordion("(Result.md)", open=True):
|
| 612 |
markdown_output = gr.Markdown()
|
|
@@ -641,4 +509,4 @@ def create_gradio_interface():
|
|
| 641 |
if __name__ == "__main__":
|
| 642 |
demo = create_gradio_interface()
|
| 643 |
|
| 644 |
-
demo.queue(max_size=50).launch(
|
|
|
|
| 4 |
import os
|
| 5 |
import traceback
|
| 6 |
from io import BytesIO
|
| 7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
import re
|
| 9 |
import time
|
| 10 |
from threading import Thread
|
|
|
|
| 21 |
import torchvision.transforms as T
|
| 22 |
from torchvision.transforms.functional import InterpolationMode
|
| 23 |
|
| 24 |
+
|
| 25 |
from transformers import (
|
| 26 |
Qwen2_5_VLForConditionalGeneration,
|
| 27 |
Qwen2VLForConditionalGeneration,
|
|
|
|
| 43 |
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
| 44 |
from reportlab.lib.units import inch
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# --- Constants and Model Setup ---
|
| 47 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 48 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 414 |
# --- Gradio UI Definition ---
|
| 415 |
def create_gradio_interface():
|
| 416 |
"""Builds and returns the Gradio web interface."""
|
| 417 |
+
css = """
|
| 418 |
+
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 419 |
+
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
|
| 420 |
+
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 421 |
+
#gallery { min-height: 400px; }
|
| 422 |
+
"""
|
| 423 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
| 424 |
gr.HTML("""
|
| 425 |
<div class="title" style="text-align: center">
|
| 426 |
+
<h1>Tiny VLMs Lab🧪</h1>
|
| 427 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
| 428 |
Tiny VLMs for Image Content Extraction and Understanding
|
| 429 |
</p>
|
|
|
|
| 440 |
"Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)",
|
| 441 |
"LMM-R1-MGT-PerceReason(reason)", "OCRFlux-3B(ocr)", "TBAC-VLR1-3B(open-r1)",
|
| 442 |
"SmolVLM-500M-Instruct(smol)", "llava-onevision-qwen2-0.5b-ov-hf(mini)"],
|
| 443 |
+
label="Select Model", value= "LFM2-VL-450M(fast)"
|
| 444 |
)
|
| 445 |
|
| 446 |
+
prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter the prompt")
|
| 447 |
+
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
| 448 |
|
| 449 |
with gr.Accordion("Advanced Settings (PDF)", open=False):
|
| 450 |
+
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=2048, step=256, label="Max New Tokens")
|
| 451 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 452 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 453 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
|
|
|
| 459 |
alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
|
| 460 |
image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")
|
| 461 |
|
| 462 |
+
process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"], size="lg")
|
| 463 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
|
|
|
| 464 |
|
| 465 |
# Right Column (Outputs)
|
| 466 |
with gr.Column(scale=2):
|
| 467 |
with gr.Tabs() as tabs:
|
| 468 |
with gr.Tab("📝 Extracted Content"):
|
| 469 |
+
raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
|
| 470 |
with gr.Row():
|
| 471 |
examples = gr.Examples(
|
| 472 |
examples=["examples/1.png", "examples/2.png", "examples/3.png",
|
| 473 |
"examples/4.png", "examples/5.png", "examples/6.png"],
|
| 474 |
inputs=image_input, label="Examples"
|
| 475 |
)
|
| 476 |
+
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/Tiny-VLMs-Lab/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")
|
| 477 |
+
|
| 478 |
with gr.Tab("📰 README.md"):
|
| 479 |
with gr.Accordion("(Result.md)", open=True):
|
| 480 |
markdown_output = gr.Markdown()
|
|
|
|
| 509 |
if __name__ == "__main__":
|
| 510 |
demo = create_gradio_interface()
|
| 511 |
|
| 512 |
+
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|