prithivMLmods's picture
update app
2768728 verified
import os
import sys
import spaces
from typing import Iterable
import gradio as gr
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C",
c800="#2E5378", c900="#264364", c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue,
text_size=text_size, font=font, font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
MODEL_IDS = {
"Florence-2-base": "florence-community/Florence-2-base",
"Florence-2-base-ft": "florence-community/Florence-2-base-ft",
"Florence-2-large": "florence-community/Florence-2-large",
"Florence-2-large-ft": "florence-community/Florence-2-large-ft",
}
models = {}
processors = {}
print("Loading Florence-2 models... This may take a while.")
for name, repo_id in MODEL_IDS.items():
print(f"Loading {name}...")
model = Florence2ForConditionalGeneration.from_pretrained(
repo_id,
dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
models[name] = model
processors[name] = processor
print(f"✅ Finished loading {name}.")
print("\n🎉 All models loaded successfully!")
@spaces.GPU(duration=30)
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
max_new_tokens: int = 1024, num_beams: int = 3):
"""
Runs inference using the selected Florence-2 model.
"""
if image is None:
return "Please upload an image to get started."
model = models[model_name]
processor = processors[model_name]
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
image_size = image.size
parsed_answer = processor.post_process_generation(
generated_text, task=task_prompt, image_size=image_size
)
return parsed_answer
florence_tasks = [
"<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
"<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
]
url = "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/venice.jpg?download=true"
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the results.")
with gr.Row():
with gr.Column(scale=2):
image_upload = gr.Image(type="pil", label="Upload Image", value=example_image, height=290)
task_prompt = gr.Dropdown(
label="Select Task",
choices=florence_tasks,
value="<MORE_DETAILED_CAPTION>"
)
model_choice = gr.Radio(
choices=list(MODEL_IDS.keys()),
label="Select Model",
value="Florence-2-base"
)
image_submit = gr.Button("Submit", variant="primary")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(
label="Max New Tokens", minimum=128, maximum=2048, step=128, value=1024
)
num_beams = gr.Slider(
label="Number of Beams", minimum=1, maximum=10, step=1, value=3
)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
parsed_output = gr.JSON(label="Parsed Answer")
image_submit.click(
fn=run_florence2_inference,
inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
outputs=[parsed_output]
)
if __name__ == "__main__":
demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True)