Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import json
|
|
| 6 |
import os
|
| 7 |
import plotly.express as px
|
| 8 |
import altair as alt
|
| 9 |
-
from utils import analyze_company_data, TextToSpeechConverter
|
| 10 |
|
| 11 |
# Set page config
|
| 12 |
st.set_page_config(
|
|
@@ -43,151 +43,327 @@ def process_company(company_name):
|
|
| 43 |
return {"articles": [], "comparative_sentiment_score": {}, "final_sentiment_analysis": "", "audio_path": None}
|
| 44 |
|
| 45 |
def main():
|
| 46 |
-
st.title("News Summarization
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
"
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
})
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
|
| 174 |
-
|
| 175 |
-
indices = article.get("sentiment_indices", {})
|
| 176 |
-
if indices:
|
| 177 |
-
st.write("**Sentiment Indices:**")
|
| 178 |
-
for index_name, value in indices.items():
|
| 179 |
-
st.write(f"- {index_name.replace('_', ' ').title()}: {value:.2f}")
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
| 193 |
main()
|
|
|
|
| 6 |
import os
|
| 7 |
import plotly.express as px
|
| 8 |
import altair as alt
|
| 9 |
+
from utils import analyze_company_data, TextToSpeechConverter
|
| 10 |
|
| 11 |
# Set page config
|
| 12 |
st.set_page_config(
|
|
|
|
| 43 |
return {"articles": [], "comparative_sentiment_score": {}, "final_sentiment_analysis": "", "audio_path": None}
|
| 44 |
|
| 45 |
def main():
|
| 46 |
+
st.title("📰 News Summarization and Analysis")
|
| 47 |
+
|
| 48 |
+
# Sidebar
|
| 49 |
+
st.sidebar.header("Settings")
|
| 50 |
+
|
| 51 |
+
# Replace dropdown with text input
|
| 52 |
+
company = st.sidebar.text_input(
|
| 53 |
+
"Enter Company Name",
|
| 54 |
+
placeholder="e.g., Tesla, Apple, Microsoft, or any other company",
|
| 55 |
+
help="Enter the name of any company you want to analyze"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
if st.sidebar.button("Analyze") and company:
|
| 59 |
+
if len(company.strip()) < 2:
|
| 60 |
+
st.sidebar.error("Please enter a valid company name (at least 2 characters)")
|
| 61 |
+
else:
|
| 62 |
+
with st.spinner("Analyzing news articles..."):
|
| 63 |
+
try:
|
| 64 |
+
# Process company data
|
| 65 |
+
data = analyze_company_data(company)
|
| 66 |
+
|
| 67 |
+
if not data["articles"]:
|
| 68 |
+
st.error("No articles found for analysis.")
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
# Display Articles
|
| 72 |
+
st.header("📑 News Articles")
|
| 73 |
+
for idx, article in enumerate(data["articles"], 1):
|
| 74 |
+
with st.expander(f"Article {idx}: {article['title']}"):
|
| 75 |
+
st.write("**Content:**", article.get("content", "No content available"))
|
| 76 |
+
if "summary" in article:
|
| 77 |
+
st.write("**Summary:**", article["summary"])
|
| 78 |
+
st.write("**Source:**", article.get("source", "Unknown"))
|
| 79 |
+
|
| 80 |
+
# Enhanced sentiment display
|
| 81 |
+
if "sentiment" in article:
|
| 82 |
+
sentiment_col1, sentiment_col2 = st.columns(2)
|
| 83 |
+
with sentiment_col1:
|
| 84 |
+
st.write("**Sentiment:**", article["sentiment"])
|
| 85 |
+
st.write("**Confidence Score:**", f"{article.get('sentiment_score', 0)*100:.1f}%")
|
| 86 |
+
|
| 87 |
+
with sentiment_col2:
|
| 88 |
+
# Display fine-grained sentiment if available
|
| 89 |
+
if "fine_grained_sentiment" in article and article["fine_grained_sentiment"]:
|
| 90 |
+
fine_grained = article["fine_grained_sentiment"]
|
| 91 |
+
if "category" in fine_grained:
|
| 92 |
+
st.write("**Detailed Sentiment:**", fine_grained["category"])
|
| 93 |
+
if "confidence" in fine_grained:
|
| 94 |
+
st.write("**Confidence:**", f"{fine_grained['confidence']*100:.1f}%")
|
| 95 |
+
|
| 96 |
+
# Display sentiment indices if available
|
| 97 |
+
if "sentiment_indices" in article and article["sentiment_indices"]:
|
| 98 |
+
st.markdown("**Sentiment Indices:**")
|
| 99 |
+
indices = article["sentiment_indices"]
|
| 100 |
+
|
| 101 |
+
# Create columns for displaying indices
|
| 102 |
+
idx_cols = st.columns(3)
|
| 103 |
+
|
| 104 |
+
# Display positivity and negativity in first column
|
| 105 |
+
with idx_cols[0]:
|
| 106 |
+
if "positivity_index" in indices:
|
| 107 |
+
st.markdown(f"**Positivity:** {indices['positivity_index']:.2f}")
|
| 108 |
+
if "negativity_index" in indices:
|
| 109 |
+
st.markdown(f"**Negativity:** {indices['negativity_index']:.2f}")
|
| 110 |
+
|
| 111 |
+
# Display emotional intensity and controversy in second column
|
| 112 |
+
with idx_cols[1]:
|
| 113 |
+
if "emotional_intensity" in indices:
|
| 114 |
+
st.markdown(f"**Emotional Intensity:** {indices['emotional_intensity']:.2f}")
|
| 115 |
+
if "controversy_score" in indices:
|
| 116 |
+
st.markdown(f"**Controversy:** {indices['controversy_score']:.2f}")
|
| 117 |
+
|
| 118 |
+
# Display confidence and ESG in third column
|
| 119 |
+
with idx_cols[2]:
|
| 120 |
+
if "confidence_score" in indices:
|
| 121 |
+
st.markdown(f"**Confidence:** {indices['confidence_score']:.2f}")
|
| 122 |
+
if "esg_relevance" in indices:
|
| 123 |
+
st.markdown(f"**ESG Relevance:** {indices['esg_relevance']:.2f}")
|
| 124 |
+
|
| 125 |
+
# Display entities if available
|
| 126 |
+
if "entities" in article and article["entities"]:
|
| 127 |
+
st.markdown("**Named Entities:**")
|
| 128 |
+
entities = article["entities"]
|
| 129 |
+
|
| 130 |
+
# Organizations
|
| 131 |
+
if "ORG" in entities and entities["ORG"]:
|
| 132 |
+
st.write("**Organizations:**", ", ".join(entities["ORG"]))
|
| 133 |
+
|
| 134 |
+
# People
|
| 135 |
+
if "PERSON" in entities and entities["PERSON"]:
|
| 136 |
+
st.write("**People:**", ", ".join(entities["PERSON"]))
|
| 137 |
+
|
| 138 |
+
# Locations
|
| 139 |
+
if "GPE" in entities and entities["GPE"]:
|
| 140 |
+
st.write("**Locations:**", ", ".join(entities["GPE"]))
|
| 141 |
+
|
| 142 |
+
# Money
|
| 143 |
+
if "MONEY" in entities and entities["MONEY"]:
|
| 144 |
+
st.write("**Financial Values:**", ", ".join(entities["MONEY"]))
|
| 145 |
+
|
| 146 |
+
# Display sentiment targets if available
|
| 147 |
+
if "sentiment_targets" in article and article["sentiment_targets"]:
|
| 148 |
+
st.markdown("**Sentiment Targets:**")
|
| 149 |
+
targets = article["sentiment_targets"]
|
| 150 |
+
for target in targets:
|
| 151 |
+
st.markdown(f"**{target['entity']}** ({target['type']}): {target['sentiment']} ({target['confidence']*100:.1f}%)")
|
| 152 |
+
st.markdown(f"> {target['context']}")
|
| 153 |
+
st.markdown("---")
|
| 154 |
+
|
| 155 |
+
if "url" in article:
|
| 156 |
+
st.write("**[Read More](%s)**" % article["url"])
|
| 157 |
+
|
| 158 |
+
# Display Comparative Analysis
|
| 159 |
+
st.header("📊 Comparative Analysis")
|
| 160 |
+
analysis = data.get("comparative_sentiment_score", {})
|
| 161 |
+
|
| 162 |
+
# Sentiment Distribution
|
| 163 |
+
if "sentiment_distribution" in analysis:
|
| 164 |
+
st.subheader("Sentiment Distribution")
|
| 165 |
+
|
| 166 |
+
sentiment_dist = analysis["sentiment_distribution"]
|
| 167 |
+
|
| 168 |
+
try:
|
| 169 |
+
# Extract basic sentiment data
|
| 170 |
+
if isinstance(sentiment_dist, dict):
|
| 171 |
+
if "basic" in sentiment_dist and isinstance(sentiment_dist["basic"], dict):
|
| 172 |
+
basic_dist = sentiment_dist["basic"]
|
| 173 |
+
elif any(k in sentiment_dist for k in ['positive', 'negative', 'neutral']):
|
| 174 |
+
basic_dist = {k: v for k, v in sentiment_dist.items()
|
| 175 |
+
if k in ['positive', 'negative', 'neutral']}
|
| 176 |
+
else:
|
| 177 |
+
basic_dist = {'positive': 0, 'negative': 0, 'neutral': 1}
|
| 178 |
+
else:
|
| 179 |
+
basic_dist = {'positive': 0, 'negative': 0, 'neutral': 1}
|
| 180 |
+
|
| 181 |
+
# Calculate percentages
|
| 182 |
+
total_articles = sum(basic_dist.values())
|
| 183 |
+
if total_articles > 0:
|
| 184 |
+
percentages = {
|
| 185 |
+
k: (v / total_articles) * 100
|
| 186 |
+
for k, v in basic_dist.items()
|
| 187 |
+
}
|
| 188 |
+
else:
|
| 189 |
+
percentages = {k: 0 for k in basic_dist}
|
| 190 |
+
|
| 191 |
+
# Display as metrics
|
| 192 |
+
st.write("**Sentiment Distribution:**")
|
| 193 |
+
|
| 194 |
+
col1, col2, col3 = st.columns(3)
|
| 195 |
+
with col1:
|
| 196 |
+
st.metric(
|
| 197 |
+
"Positive",
|
| 198 |
+
basic_dist.get('positive', 0),
|
| 199 |
+
f"{percentages.get('positive', 0):.1f}%"
|
| 200 |
+
)
|
| 201 |
+
with col2:
|
| 202 |
+
st.metric(
|
| 203 |
+
"Negative",
|
| 204 |
+
basic_dist.get('negative', 0),
|
| 205 |
+
f"{percentages.get('negative', 0):.1f}%"
|
| 206 |
+
)
|
| 207 |
+
with col3:
|
| 208 |
+
st.metric(
|
| 209 |
+
"Neutral",
|
| 210 |
+
basic_dist.get('neutral', 0),
|
| 211 |
+
f"{percentages.get('neutral', 0):.1f}%"
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Create visualization
|
| 215 |
+
chart_data = pd.DataFrame({
|
| 216 |
+
'Sentiment': ['Positive', 'Negative', 'Neutral'],
|
| 217 |
+
'Count': [
|
| 218 |
+
basic_dist.get('positive', 0),
|
| 219 |
+
basic_dist.get('negative', 0),
|
| 220 |
+
basic_dist.get('neutral', 0)
|
| 221 |
+
],
|
| 222 |
+
'Percentage': [
|
| 223 |
+
f"{percentages.get('positive', 0):.1f}%",
|
| 224 |
+
f"{percentages.get('negative', 0):.1f}%",
|
| 225 |
+
f"{percentages.get('neutral', 0):.1f}%"
|
| 226 |
+
]
|
| 227 |
})
|
| 228 |
+
|
| 229 |
+
chart = alt.Chart(chart_data).mark_bar().encode(
|
| 230 |
+
y='Sentiment',
|
| 231 |
+
x='Count',
|
| 232 |
+
color=alt.Color('Sentiment', scale=alt.Scale(
|
| 233 |
+
domain=['Positive', 'Negative', 'Neutral'],
|
| 234 |
+
range=['green', 'red', 'gray']
|
| 235 |
+
)),
|
| 236 |
+
tooltip=['Sentiment', 'Count', 'Percentage']
|
| 237 |
+
).properties(
|
| 238 |
+
width=600,
|
| 239 |
+
height=300
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
text = chart.mark_text(
|
| 243 |
+
align='left',
|
| 244 |
+
baseline='middle',
|
| 245 |
+
dx=3
|
| 246 |
+
).encode(
|
| 247 |
+
text='Percentage'
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
chart_with_text = (chart + text)
|
| 251 |
+
st.altair_chart(chart_with_text, use_container_width=True)
|
| 252 |
|
| 253 |
+
except Exception as e:
|
| 254 |
+
st.error(f"Error creating visualization: {str(e)}")
|
| 255 |
+
|
| 256 |
+
# Display sentiment indices if available
|
| 257 |
+
if "sentiment_indices" in analysis and analysis["sentiment_indices"]:
|
| 258 |
+
st.subheader("Sentiment Indices")
|
| 259 |
|
| 260 |
+
indices = analysis["sentiment_indices"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
try:
|
| 263 |
+
if isinstance(indices, dict):
|
| 264 |
+
# Display as metrics in columns
|
| 265 |
+
cols = st.columns(3)
|
| 266 |
+
|
| 267 |
+
display_names = {
|
| 268 |
+
"positivity_index": "Positivity",
|
| 269 |
+
"negativity_index": "Negativity",
|
| 270 |
+
"emotional_intensity": "Emotional Intensity",
|
| 271 |
+
"controversy_score": "Controversy",
|
| 272 |
+
"confidence_score": "Confidence",
|
| 273 |
+
"esg_relevance": "ESG Relevance"
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
for i, (key, value) in enumerate(indices.items()):
|
| 277 |
+
if isinstance(value, (int, float)):
|
| 278 |
+
with cols[i % 3]:
|
| 279 |
+
display_name = display_names.get(key, key.replace("_", " ").title())
|
| 280 |
+
st.metric(display_name, f"{value:.2f}")
|
| 281 |
+
|
| 282 |
+
# Create visualization
|
| 283 |
+
chart_data = pd.DataFrame({
|
| 284 |
+
'Index': [display_names.get(k, k.replace("_", " ").title()) for k in indices.keys()],
|
| 285 |
+
'Value': [v if isinstance(v, (int, float)) else 0 for v in indices.values()]
|
| 286 |
+
})
|
| 287 |
+
|
| 288 |
+
chart = alt.Chart(chart_data).mark_bar().encode(
|
| 289 |
+
x='Value',
|
| 290 |
+
y='Index',
|
| 291 |
+
color=alt.Color('Index')
|
| 292 |
+
).properties(
|
| 293 |
+
width=600,
|
| 294 |
+
height=300
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
st.altair_chart(chart, use_container_width=True)
|
| 298 |
+
|
| 299 |
+
# Add descriptions
|
| 300 |
+
with st.expander("Sentiment Indices Explained"):
|
| 301 |
+
st.markdown("""
|
| 302 |
+
- **Positivity**: Measures the positive sentiment in the articles (0-1)
|
| 303 |
+
- **Negativity**: Measures the negative sentiment in the articles (0-1)
|
| 304 |
+
- **Emotional Intensity**: Measures the overall emotional content (0-1)
|
| 305 |
+
- **Controversy**: High when both positive and negative sentiments are strong (0-1)
|
| 306 |
+
- **Confidence**: Confidence in the sentiment analysis (0-1)
|
| 307 |
+
- **ESG Relevance**: Relevance to Environmental, Social, and Governance topics (0-1)
|
| 308 |
+
""")
|
| 309 |
+
except Exception as e:
|
| 310 |
+
st.error(f"Error creating indices visualization: {str(e)}")
|
| 311 |
+
|
| 312 |
+
# Display Final Analysis and Audio
|
| 313 |
+
st.header("🎯 Final Analysis")
|
| 314 |
+
if "final_sentiment_analysis" in data:
|
| 315 |
+
st.write(data["final_sentiment_analysis"])
|
| 316 |
+
|
| 317 |
+
# Display sentiment indices in the sidebar
|
| 318 |
+
if "sentiment_indices" in analysis and analysis["sentiment_indices"]:
|
| 319 |
+
indices = analysis["sentiment_indices"]
|
| 320 |
+
if indices and any(isinstance(v, (int, float)) for v in indices.values()):
|
| 321 |
+
st.sidebar.markdown("### Sentiment Indices")
|
| 322 |
+
for idx_name, idx_value in indices.items():
|
| 323 |
+
if isinstance(idx_value, (int, float)):
|
| 324 |
+
formatted_name = " ".join(word.capitalize() for word in idx_name.replace("_", " ").split())
|
| 325 |
+
st.sidebar.metric(formatted_name, f"{idx_value:.2f}")
|
| 326 |
+
|
| 327 |
+
# Display ensemble model information if available
|
| 328 |
+
if "ensemble_info" in data:
|
| 329 |
+
with st.expander("Ensemble Model Details"):
|
| 330 |
+
ensemble = data["ensemble_info"]
|
| 331 |
+
|
| 332 |
+
if "agreement" in ensemble:
|
| 333 |
+
st.metric("Model Agreement", f"{ensemble['agreement']*100:.1f}%")
|
| 334 |
+
|
| 335 |
+
if "models" in ensemble:
|
| 336 |
+
st.subheader("Individual Model Results")
|
| 337 |
+
models_data = []
|
| 338 |
+
for model_name, model_info in ensemble["models"].items():
|
| 339 |
+
models_data.append({
|
| 340 |
+
"Model": model_name,
|
| 341 |
+
"Sentiment": model_info.get("sentiment", "N/A"),
|
| 342 |
+
"Confidence": f"{model_info.get('confidence', 0)*100:.1f}%"
|
| 343 |
+
})
|
| 344 |
+
|
| 345 |
+
if models_data:
|
| 346 |
+
st.table(pd.DataFrame(models_data))
|
| 347 |
+
|
| 348 |
+
# Audio Playback Section
|
| 349 |
+
st.subheader("🔊 Listen to Analysis (Hindi)")
|
| 350 |
+
if data.get("audio_path") and os.path.exists(data["audio_path"]):
|
| 351 |
+
st.audio(data["audio_path"])
|
| 352 |
+
else:
|
| 353 |
+
st.warning("Hindi audio summary not available")
|
| 354 |
+
|
| 355 |
+
# Total Articles
|
| 356 |
+
if "total_articles" in analysis:
|
| 357 |
+
st.sidebar.info(f"Found {analysis['total_articles']} articles")
|
| 358 |
|
| 359 |
+
except Exception as e:
|
| 360 |
+
st.error(f"Error analyzing company data: {str(e)}")
|
| 361 |
+
print(f"Error: {str(e)}")
|
| 362 |
+
|
| 363 |
+
# Add a disclaimer
|
| 364 |
+
st.sidebar.markdown("---")
|
| 365 |
+
st.sidebar.markdown("### About")
|
| 366 |
+
st.sidebar.write("This app analyzes news articles and provides sentiment analysis for any company.")
|
| 367 |
|
| 368 |
if __name__ == "__main__":
|
| 369 |
main()
|