#!/usr/bin/env python3 """Hugging Face API and service integration tests""" import asyncio import os import aiohttp import base64 from pathlib import Path from dotenv import load_dotenv load_dotenv() async def test_api_key(): """Test if HF API key is valid""" hf_api_key = os.getenv('HF_API_KEY') if not hf_api_key: print("ERROR: HF_API_KEY not found in environment variables") return None print(f"SUCCESS: HF_API_KEY found: {hf_api_key[:10]}...") try: async with aiohttp.ClientSession() as session: async with session.get( "https://huggingface.co/api/whoami", headers={"Authorization": f"Bearer {hf_api_key}"} ) as resp: if resp.status == 200: user_info = await resp.json() print(f"SUCCESS: API key valid! User: {user_info.get('name', 'Unknown')}") return hf_api_key else: print(f"ERROR: API key validation failed: {resp.status}") return None except Exception as e: print(f"ERROR: API key validation exception: {str(e)}") return None async def test_basic_models(api_key): """Test basic model accessibility""" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } print("\nTESTING: GPT-2 text generation...") try: async with aiohttp.ClientSession() as session: payload = { "inputs": "Hello, this is a test message.", "parameters": {"max_new_tokens": 50} } async with session.post( "https://api-inference.huggingface.co/models/gpt2", headers=headers, json=payload, timeout=aiohttp.ClientTimeout(total=30) ) as resp: if resp.status == 200: result = await resp.json() print(f"SUCCESS: GPT-2 test successful") elif resp.status == 503: print(f"LOADING: GPT-2 is loading") else: print(f"ERROR: GPT-2 test failed: {resp.status}") except Exception as e: print(f"ERROR: GPT-2 test exception: {str(e)}") print("\nTESTING: Image captioning pipeline...") try: async with aiohttp.ClientSession() as session: test_image = "" payload = { "inputs": test_image, "parameters": {"max_new_tokens": 100} } async with session.post( "https://api-inference.huggingface.co/pipeline/image-to-text", headers=headers, json=payload, timeout=aiohttp.ClientTimeout(total=30) ) as resp: if resp.status == 200: result = await resp.json() print(f"SUCCESS: Image captioning test successful") elif resp.status == 503: print(f"LOADING: Image captioning service is loading") else: print(f"ERROR: Image captioning test failed: {resp.status}") except Exception as e: print(f"ERROR: Image captioning test exception: {str(e)}") async def test_vision_models(api_key): """Test vision-language models""" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } models = [ { "name": "LLaVA 1.5 7B", "model_id": "llava-hf/llava-1.5-7b-hf", "endpoint": "https://api-inference.huggingface.co/models/llava-hf/llava-1.5-7b-hf" }, { "name": "BLIP-2", "model_id": "Salesforce/blip-image-captioning-base", "endpoint": "https://api-inference.huggingface.co/pipeline/image-to-text" } ] dummy_image = b"dummy_image_data_for_testing" image_base64 = base64.b64encode(dummy_image).decode('utf-8') for model in models: print(f"\nTESTING: {model['name']}...") try: async with aiohttp.ClientSession() as session: if "pipeline" in model['endpoint']: payload = { "inputs": f"data:image/jpeg;base64,{image_base64}", "parameters": {"max_new_tokens": 100} } else: payload = { "inputs": [ {"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}} ], "parameters": {"max_new_tokens": 200, "temperature": 0.7} } async with session.post( model['endpoint'], headers=headers, json=payload, timeout=aiohttp.ClientTimeout(total=60) ) as resp: if resp.status == 200: print(f"SUCCESS: {model['name']} test successful") elif resp.status == 503: print(f"LOADING: {model['name']} is loading") elif resp.status == 404: print(f"ERROR: {model['name']} not found") else: print(f"ERROR: {model['name']} test failed: {resp.status}") except Exception as e: print(f"ERROR: {model['name']} test exception: {str(e)}") async def test_service_integration(api_key): """Test Hugging Face service integration with the app""" print("\nTESTING: Service integration...") try: import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from app.services.huggingface_service import LLaVAService, BLIP2Service, InstructBLIPService from app.services.vlm_service import vlm_manager llava_service = LLaVAService(api_key) blip2_service = BLIP2Service(api_key) instructblip_service = InstructBLIPService(api_key) vlm_manager.register_service(llava_service) vlm_manager.register_service(blip2_service) vlm_manager.register_service(instructblip_service) print(f"SUCCESS: All services registered. Available: {list(vlm_manager.services.keys())}") dummy_image_bytes = b"dummy_image_data_for_testing" try: result = await llava_service.generate_caption(dummy_image_bytes, "Describe this image") print(f"SUCCESS: LLaVA service test completed") except Exception as e: print(f"ERROR: LLaVA service test failed: {e}") try: result = await blip2_service.generate_caption(dummy_image_bytes, "Describe this image") print(f"SUCCESS: BLIP2 service test completed") except Exception as e: print(f"ERROR: BLIP2 service test failed: {e}") try: result = await instructblip_service.generate_caption(dummy_image_bytes, "Describe this image") print(f"SUCCESS: InstructBLIP service test completed") except Exception as e: print(f"ERROR: InstructBLIP service test failed: {e}") except ImportError as e: print(f"ERROR: Could not import services: {e}") except Exception as e: print(f"ERROR: Service integration test failed: {e}") async def main(): """Run all Hugging Face tests""" print("Hugging Face Integration Tests") print("=" * 50) api_key = await test_api_key() if not api_key: print("\nERROR: Cannot proceed without valid API key") return await test_basic_models(api_key) await test_vision_models(api_key) await test_service_integration(api_key) print("\n" + "=" * 50) print("All Hugging Face tests completed") if __name__ == "__main__": asyncio.run(main())