Spaces:
Sleeping
Sleeping
Commit
·
196b164
1
Parent(s):
ae1a3fb
moved code to earthview.py
Browse files- app.py +11 -87
- earthview.py +84 -0
app.py
CHANGED
|
@@ -1,29 +1,15 @@
|
|
| 1 |
from datasets import load_dataset, get_dataset_config_names
|
| 2 |
from functools import partial
|
| 3 |
from pandas import DataFrame
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
-
import numpy as np
|
| 7 |
import tqdm
|
| 8 |
-
import json
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
DATASET = "satellogic/EarthView"
|
| 12 |
DEBUG = False
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
"shards" : 3676,
|
| 17 |
-
},
|
| 18 |
-
"sentinel_1": {
|
| 19 |
-
"shards" : 1763,
|
| 20 |
-
},
|
| 21 |
-
"neon": {
|
| 22 |
-
"config" : "default",
|
| 23 |
-
"shards" : 607,
|
| 24 |
-
"path" : "data",
|
| 25 |
-
}
|
| 26 |
-
}
|
| 27 |
|
| 28 |
def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
| 29 |
if shard == -1:
|
|
@@ -31,9 +17,9 @@ def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
|
| 31 |
data_files = None
|
| 32 |
shards = 100
|
| 33 |
else:
|
| 34 |
-
config = sets[set_name].get("config", set_name)
|
| 35 |
-
shards = sets[set_name]["shards"]
|
| 36 |
-
path = sets[set_name].get("path", set_name)
|
| 37 |
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
|
| 38 |
|
| 39 |
if DEBUG:
|
|
@@ -60,68 +46,6 @@ def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
|
| 60 |
state
|
| 61 |
)
|
| 62 |
|
| 63 |
-
def item_to_images(config, item):
|
| 64 |
-
metadata = item["metadata"]
|
| 65 |
-
if type(metadata) == str:
|
| 66 |
-
metadata = json.loads(metadata)
|
| 67 |
-
|
| 68 |
-
item = {
|
| 69 |
-
k: np.asarray(v).astype("uint8")
|
| 70 |
-
for k,v in item.items()
|
| 71 |
-
if k != "metadata"
|
| 72 |
-
}
|
| 73 |
-
item["metadata"] = metadata
|
| 74 |
-
|
| 75 |
-
if config == "satellogic":
|
| 76 |
-
item["rgb"] = [
|
| 77 |
-
Image.fromarray(image.transpose(1,2,0))
|
| 78 |
-
for image in item["rgb"]
|
| 79 |
-
]
|
| 80 |
-
item["1m"] = [
|
| 81 |
-
Image.fromarray(image[0,:,:])
|
| 82 |
-
for image in item["1m"]
|
| 83 |
-
]
|
| 84 |
-
elif config == "sentinel_1":
|
| 85 |
-
# Mapping of V and H to RGB. May not be correct
|
| 86 |
-
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
|
| 87 |
-
i10m = item["10m"]
|
| 88 |
-
i10m = np.concatenate(
|
| 89 |
-
( i10m,
|
| 90 |
-
np.expand_dims(
|
| 91 |
-
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
|
| 92 |
-
1
|
| 93 |
-
).astype("uint8")
|
| 94 |
-
),
|
| 95 |
-
1
|
| 96 |
-
)
|
| 97 |
-
item["10m"] = [
|
| 98 |
-
Image.fromarray(image.transpose(1,2,0))
|
| 99 |
-
for image in i10m
|
| 100 |
-
]
|
| 101 |
-
elif config == "default":
|
| 102 |
-
item["rgb"] = [
|
| 103 |
-
Image.fromarray(image.transpose(1,2,0))
|
| 104 |
-
for image in item["rgb"]
|
| 105 |
-
]
|
| 106 |
-
item["chm"] = [
|
| 107 |
-
Image.fromarray(image[0])
|
| 108 |
-
for image in item["chm"]
|
| 109 |
-
]
|
| 110 |
-
|
| 111 |
-
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
|
| 112 |
-
# It just averages each 1/3 of the bads and assigns it to a channel
|
| 113 |
-
item["1m"] = [
|
| 114 |
-
Image.fromarray(
|
| 115 |
-
np.concatenate((
|
| 116 |
-
np.expand_dims(np.average(image[:124],0),2),
|
| 117 |
-
np.expand_dims(np.average(image[124:247],0),2),
|
| 118 |
-
np.expand_dims(np.average(image[247:],0),2))
|
| 119 |
-
,2).astype("uint8"))
|
| 120 |
-
for image in item["1m"]
|
| 121 |
-
]
|
| 122 |
-
return item
|
| 123 |
-
|
| 124 |
-
|
| 125 |
def get_images(batch_size, state):
|
| 126 |
config = state["config"]
|
| 127 |
|
|
@@ -138,7 +62,7 @@ def get_images(batch_size, state):
|
|
| 138 |
except StopIteration:
|
| 139 |
break
|
| 140 |
metadata = item["metadata"]
|
| 141 |
-
item = item_to_images(config, item)
|
| 142 |
|
| 143 |
if config == "satellogic":
|
| 144 |
images.extend(item["rgb"])
|
|
@@ -163,20 +87,20 @@ if __name__ == "__main__":
|
|
| 163 |
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
|
| 164 |
state = new_state()
|
| 165 |
|
| 166 |
-
gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
|
| 167 |
batch_size = gr.Number(10, label = "Batch Size", render=False)
|
| 168 |
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
|
| 169 |
table = gr.DataFrame(render = False)
|
| 170 |
# headers=["Index","TimeStamp","Bounds","CRS"],
|
| 171 |
|
| 172 |
gallery = gr.Gallery(
|
| 173 |
-
label=DATASET,
|
| 174 |
interactive=False,
|
| 175 |
columns=5, rows=2, render=False)
|
| 176 |
|
| 177 |
with gr.Row():
|
| 178 |
-
dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
|
| 179 |
-
config = gr.Dropdown(choices=
|
| 180 |
split = gr.Textbox(label="Split", value="train")
|
| 181 |
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
|
| 182 |
|
|
|
|
| 1 |
from datasets import load_dataset, get_dataset_config_names
|
| 2 |
from functools import partial
|
| 3 |
from pandas import DataFrame
|
| 4 |
+
import earthview as ev
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
import tqdm
|
|
|
|
| 7 |
import os
|
| 8 |
|
|
|
|
| 9 |
DEBUG = False
|
| 10 |
|
| 11 |
+
if DEBUG:
|
| 12 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
| 15 |
if shard == -1:
|
|
|
|
| 17 |
data_files = None
|
| 18 |
shards = 100
|
| 19 |
else:
|
| 20 |
+
config = ev.sets[set_name].get("config", set_name)
|
| 21 |
+
shards = ev.sets[set_name]["shards"]
|
| 22 |
+
path = ev.sets[set_name].get("path", set_name)
|
| 23 |
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
|
| 24 |
|
| 25 |
if DEBUG:
|
|
|
|
| 46 |
state
|
| 47 |
)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def get_images(batch_size, state):
|
| 50 |
config = state["config"]
|
| 51 |
|
|
|
|
| 62 |
except StopIteration:
|
| 63 |
break
|
| 64 |
metadata = item["metadata"]
|
| 65 |
+
item = ev.item_to_images(config, item)
|
| 66 |
|
| 67 |
if config == "satellogic":
|
| 68 |
images.extend(item["rgb"])
|
|
|
|
| 87 |
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
|
| 88 |
state = new_state()
|
| 89 |
|
| 90 |
+
gr.Markdown(f"# Viewer for [{ev.DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
|
| 91 |
batch_size = gr.Number(10, label = "Batch Size", render=False)
|
| 92 |
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
|
| 93 |
table = gr.DataFrame(render = False)
|
| 94 |
# headers=["Index","TimeStamp","Bounds","CRS"],
|
| 95 |
|
| 96 |
gallery = gr.Gallery(
|
| 97 |
+
label=ev.DATASET,
|
| 98 |
interactive=False,
|
| 99 |
columns=5, rows=2, render=False)
|
| 100 |
|
| 101 |
with gr.Row():
|
| 102 |
+
dataset = gr.Textbox(label="Dataset", value=ev.DATASET, interactive=False)
|
| 103 |
+
config = gr.Dropdown(choices=ev.get_sets(), label="Config", value="satellogic", )
|
| 104 |
split = gr.Textbox(label="Split", value="train")
|
| 105 |
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
|
| 106 |
|
earthview.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
DATASET = "satellogic/EarthView"
|
| 6 |
+
|
| 7 |
+
sets = {
|
| 8 |
+
"satellogic": {
|
| 9 |
+
"shards" : 3676,
|
| 10 |
+
},
|
| 11 |
+
"sentinel_1": {
|
| 12 |
+
"shards" : 1763,
|
| 13 |
+
},
|
| 14 |
+
"neon": {
|
| 15 |
+
"config" : "default",
|
| 16 |
+
"shards" : 607,
|
| 17 |
+
"path" : "data",
|
| 18 |
+
}
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
def get_sets():
|
| 22 |
+
return sets.keys()
|
| 23 |
+
|
| 24 |
+
def item_to_images(config, item):
|
| 25 |
+
metadata = item["metadata"]
|
| 26 |
+
if type(metadata) == str:
|
| 27 |
+
metadata = json.loads(metadata)
|
| 28 |
+
|
| 29 |
+
item = {
|
| 30 |
+
k: np.asarray(v).astype("uint8")
|
| 31 |
+
for k,v in item.items()
|
| 32 |
+
if k != "metadata"
|
| 33 |
+
}
|
| 34 |
+
item["metadata"] = metadata
|
| 35 |
+
|
| 36 |
+
if config == "satellogic":
|
| 37 |
+
item["rgb"] = [
|
| 38 |
+
Image.fromarray(image.transpose(1,2,0))
|
| 39 |
+
for image in item["rgb"]
|
| 40 |
+
]
|
| 41 |
+
item["1m"] = [
|
| 42 |
+
Image.fromarray(image[0,:,:])
|
| 43 |
+
for image in item["1m"]
|
| 44 |
+
]
|
| 45 |
+
elif config == "sentinel_1":
|
| 46 |
+
# Mapping of V and H to RGB. May not be correct
|
| 47 |
+
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
|
| 48 |
+
i10m = item["10m"]
|
| 49 |
+
i10m = np.concatenate(
|
| 50 |
+
( i10m,
|
| 51 |
+
np.expand_dims(
|
| 52 |
+
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
|
| 53 |
+
1
|
| 54 |
+
).astype("uint8")
|
| 55 |
+
),
|
| 56 |
+
1
|
| 57 |
+
)
|
| 58 |
+
item["10m"] = [
|
| 59 |
+
Image.fromarray(image.transpose(1,2,0))
|
| 60 |
+
for image in i10m
|
| 61 |
+
]
|
| 62 |
+
elif config == "default":
|
| 63 |
+
item["rgb"] = [
|
| 64 |
+
Image.fromarray(image.transpose(1,2,0))
|
| 65 |
+
for image in item["rgb"]
|
| 66 |
+
]
|
| 67 |
+
item["chm"] = [
|
| 68 |
+
Image.fromarray(image[0])
|
| 69 |
+
for image in item["chm"]
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
|
| 73 |
+
# It just averages each 1/3 of the bads and assigns it to a channel
|
| 74 |
+
item["1m"] = [
|
| 75 |
+
Image.fromarray(
|
| 76 |
+
np.concatenate((
|
| 77 |
+
np.expand_dims(np.average(image[:124],0),2),
|
| 78 |
+
np.expand_dims(np.average(image[124:247],0),2),
|
| 79 |
+
np.expand_dims(np.average(image[247:],0),2))
|
| 80 |
+
,2).astype("uint8"))
|
| 81 |
+
for image in item["1m"]
|
| 82 |
+
]
|
| 83 |
+
return item
|
| 84 |
+
|