Upload 4 files
Browse files- dockerfile +39 -0
- extract_img_pdf.py +677 -0
- requirements.txt +6 -0
- templates/index.html +27 -0
dockerfile
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base image with Python and common dependencies
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set environment variables
|
| 5 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 6 |
+
ENV PYTHONUNBUFFERED=1
|
| 7 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 8 |
+
|
| 9 |
+
# Install system dependencies
|
| 10 |
+
RUN apt-get update && apt-get install -y \
|
| 11 |
+
build-essential \
|
| 12 |
+
libglib2.0-0 \
|
| 13 |
+
libsm6 \
|
| 14 |
+
libxext6 \
|
| 15 |
+
libxrender-dev \
|
| 16 |
+
tesseract-ocr \
|
| 17 |
+
poppler-utils \
|
| 18 |
+
libgl1 \
|
| 19 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 20 |
+
|
| 21 |
+
RUN pip install -r requirements.txt
|
| 22 |
+
RUN mkdir -p /app/cache /app/data && chmod -R 777 /app/cache /app/data
|
| 23 |
+
RUN mkdir -p /app/OUTPUTS
|
| 24 |
+
RUN chmod -R 777 /app
|
| 25 |
+
|
| 26 |
+
# Set working directory
|
| 27 |
+
WORKDIR /app
|
| 28 |
+
|
| 29 |
+
# Copy requirements file and install Python dependencies
|
| 30 |
+
COPY requirements.txt requirements.txt
|
| 31 |
+
COPY extract_img_pdf.py extract_img_pdf.py
|
| 32 |
+
COPY templates/ /app/templates
|
| 33 |
+
COPY .env .env
|
| 34 |
+
|
| 35 |
+
# Expose the required port for HF Spaces
|
| 36 |
+
EXPOSE 7860
|
| 37 |
+
|
| 38 |
+
# Set the command to run your Flask app
|
| 39 |
+
CMD ["python", "extract_img_pdf.py"]
|
extract_img_pdf.py
ADDED
|
@@ -0,0 +1,677 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#==================================================================================#
|
| 2 |
+
# Find Contours from Image and Convert into PDF #
|
| 3 |
+
#==================================================================================#
|
| 4 |
+
import cv2, os
|
| 5 |
+
import numpy as np
|
| 6 |
+
from imutils.perspective import four_point_transform
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from unstructured.partition.pdf import partition_pdf
|
| 9 |
+
import json, base64, io
|
| 10 |
+
from flask import Flask, render_template, flash, redirect, url_for
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
import pytesseract
|
| 13 |
+
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
app = Flask(__name__)
|
| 17 |
+
app.secret_key = os.getenv("SECRET_KEY")
|
| 18 |
+
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 19 |
+
poppler_path=r"C:\poppler-23.11.0\Library\bin"
|
| 20 |
+
|
| 21 |
+
count = 0
|
| 22 |
+
|
| 23 |
+
OUTPUT_FOLDER = "OUTPUTS"
|
| 24 |
+
# os.makedirs(OUTPUT_FOLDER, exist_ok=True)
|
| 25 |
+
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
|
| 26 |
+
# os.makedirs(IMAGE_FOLDER_PATH, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
PDF_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_PDF")
|
| 29 |
+
# os.makedirs(PDF_FOLDER_PATH, exist_ok=True)
|
| 30 |
+
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
|
| 31 |
+
|
| 32 |
+
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, PDF_FOLDER_PATH, JSON_FOLDER_PATH]:
|
| 33 |
+
os.makedirs(path, exist_ok=True)
|
| 34 |
+
|
| 35 |
+
# --- FUNCTION: Detect document contour ---
|
| 36 |
+
def detect_document_contour(image):
|
| 37 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 38 |
+
blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 39 |
+
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 40 |
+
|
| 41 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
| 42 |
+
contours = sorted(contours, key=cv2.contourArea, reverse=True)
|
| 43 |
+
|
| 44 |
+
for contour in contours:
|
| 45 |
+
area = cv2.contourArea(contour)
|
| 46 |
+
if area > 1000:
|
| 47 |
+
peri = cv2.arcLength(contour, True)
|
| 48 |
+
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
|
| 49 |
+
if len(approx) == 4:
|
| 50 |
+
return approx
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
# --- FUNCTION: Extract images from saved PDF ---
|
| 54 |
+
def extract_images_from_pdf(pdf_path, output_json_path):
|
| 55 |
+
elements = partition_pdf(
|
| 56 |
+
filename=pdf_path,
|
| 57 |
+
|
| 58 |
+
strategy="hi_res",
|
| 59 |
+
extract_image_block_types=["Image"], # or ["Image", "Table"]
|
| 60 |
+
extract_image_block_to_payload=True, # Set to True to get base64 in output
|
| 61 |
+
)
|
| 62 |
+
with open(output_json_path, "w") as f:
|
| 63 |
+
json.dump([element.to_dict() for element in elements], f, indent=4)
|
| 64 |
+
|
| 65 |
+
# Display extracted images
|
| 66 |
+
with open(output_json_path, 'r') as file:
|
| 67 |
+
file_elements = json.load(file)
|
| 68 |
+
|
| 69 |
+
for i, element in enumerate(file_elements):
|
| 70 |
+
if "image_base64" in element["metadata"]:
|
| 71 |
+
image_data = base64.b64decode(element["metadata"]["image_base64"])
|
| 72 |
+
image = Image.open(io.BytesIO(image_data))
|
| 73 |
+
image.show(title=f"Extracted Image {i+1}")
|
| 74 |
+
|
| 75 |
+
# --- Route: Home Page ---
|
| 76 |
+
@app.route("/")
|
| 77 |
+
def index():
|
| 78 |
+
return render_template("index.html")
|
| 79 |
+
|
| 80 |
+
# --- Route: Scan Document ---
|
| 81 |
+
@app.route("/scan")
|
| 82 |
+
def scan_document():
|
| 83 |
+
global count
|
| 84 |
+
|
| 85 |
+
cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
|
| 86 |
+
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
|
| 87 |
+
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
|
| 88 |
+
|
| 89 |
+
scale = 0.5
|
| 90 |
+
contour = None
|
| 91 |
+
|
| 92 |
+
while True:
|
| 93 |
+
ret, frame = cap.read()
|
| 94 |
+
if not ret:
|
| 95 |
+
flash("Camera Error!", "error")
|
| 96 |
+
break
|
| 97 |
+
|
| 98 |
+
frame = cv2.rotate(frame, cv2.ROTATE_180)
|
| 99 |
+
display = frame.copy()
|
| 100 |
+
contour = detect_document_contour(display)
|
| 101 |
+
|
| 102 |
+
if contour is not None:
|
| 103 |
+
cv2.drawContours(display, [contour], -1, (0, 255, 0), 3)
|
| 104 |
+
|
| 105 |
+
resized = cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0])))
|
| 106 |
+
cv2.imshow("📷 Scan Document - Press 's' to Save, ESC to Exit", resized)
|
| 107 |
+
|
| 108 |
+
key = cv2.waitKey(1) & 0xFF
|
| 109 |
+
if key == 27: # ESC
|
| 110 |
+
break
|
| 111 |
+
elif key == ord('s') and contour is not None:
|
| 112 |
+
warped = four_point_transform(frame, contour.reshape(4, 2))
|
| 113 |
+
image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg")
|
| 114 |
+
pdf_path = os.path.join(PDF_FOLDER_PATH, f"scanned_colored_{count}.pdf")
|
| 115 |
+
json_path = os.path.join(JSON_FOLDER_PATH, f"scanned_{count}.json")
|
| 116 |
+
|
| 117 |
+
cv2.imwrite(image_path, warped)
|
| 118 |
+
img = Image.open(image_path).convert("RGB")
|
| 119 |
+
img.save(pdf_path)
|
| 120 |
+
extract_images_from_pdf(pdf_path, json_path)
|
| 121 |
+
|
| 122 |
+
flash("✅ Document scanned and saved!", "success")
|
| 123 |
+
count += 1
|
| 124 |
+
break
|
| 125 |
+
|
| 126 |
+
cap.release()
|
| 127 |
+
cv2.destroyAllWindows()
|
| 128 |
+
return redirect(url_for("index"))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# --- Run ---
|
| 132 |
+
if __name__ == "__main__":
|
| 133 |
+
app.run(host="0.0.0.0", port=7860, debug=False)
|
| 134 |
+
# while True:
|
| 135 |
+
# ret, frame = cap.read()
|
| 136 |
+
# if not ret:
|
| 137 |
+
# break
|
| 138 |
+
|
| 139 |
+
# frame = cv2.rotate(frame, cv2.ROTATE_180)
|
| 140 |
+
# display = frame.copy()
|
| 141 |
+
|
| 142 |
+
# contour = detect_document_contour(display)
|
| 143 |
+
# if contour is not None:
|
| 144 |
+
# cv2.drawContours(display, [contour], -1, (0, 255, 0), 3)
|
| 145 |
+
|
| 146 |
+
# cv2.imshow("Document Scanner", cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0]))))
|
| 147 |
+
|
| 148 |
+
# key = cv2.waitKey(1) & 0xFF
|
| 149 |
+
|
| 150 |
+
# if key == 27: # ESC to exit
|
| 151 |
+
# break
|
| 152 |
+
|
| 153 |
+
# elif key == ord('s') and contour is not None:
|
| 154 |
+
# warped = four_point_transform(frame, contour.reshape(4, 2))
|
| 155 |
+
# image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg")
|
| 156 |
+
# pdf_path = os.path.join(PDF_FOLDER_PATH,f"scanned_colored_{count}.pdf")
|
| 157 |
+
|
| 158 |
+
# # Save the Image
|
| 159 |
+
# cv2.imwrite(image_path, warped)
|
| 160 |
+
# print(f"[INFO] Saved: {image_path}")
|
| 161 |
+
|
| 162 |
+
# # Convert to PDF
|
| 163 |
+
# img = Image.open(image_path)
|
| 164 |
+
# img_rgb = img.convert("RGB")
|
| 165 |
+
# img_rgb.save(pdf_path)
|
| 166 |
+
# print(f"[INFO] Converted to PDF: {pdf_path}")
|
| 167 |
+
|
| 168 |
+
# # Extract and show embedded images from PDF
|
| 169 |
+
# print(f"[INFO] Extracting embedded images from PDF...")
|
| 170 |
+
# # extract_images_from_pdf(pdf_path, JSON_FOLDER_PATH)
|
| 171 |
+
|
| 172 |
+
# count += 1
|
| 173 |
+
# cap.release()
|
| 174 |
+
# cv2.destroyAllWindows()
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
''' Simple version Not a Flask APP '''
|
| 178 |
+
# import cv2, os, json, base64, io
|
| 179 |
+
# import numpy as np
|
| 180 |
+
# from imutils.perspective import four_point_transform
|
| 181 |
+
# from PIL import Image
|
| 182 |
+
# from unstructured.partition.pdf import partition_pdf
|
| 183 |
+
# import pytesseract
|
| 184 |
+
|
| 185 |
+
# # --- PATH CONFIGURATION ---
|
| 186 |
+
# pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 187 |
+
# POPPLER_PATH = r"C:\poppler-23.11.0\Library\bin"
|
| 188 |
+
|
| 189 |
+
# OUTPUT_FOLDER = "OUTPUTS"
|
| 190 |
+
# IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
|
| 191 |
+
# PDF_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_PDF")
|
| 192 |
+
# JSON_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
|
| 193 |
+
|
| 194 |
+
# for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, PDF_FOLDER_PATH, JSON_OUTPUT_FOLDER]:
|
| 195 |
+
# os.makedirs(path, exist_ok=True)
|
| 196 |
+
|
| 197 |
+
# # --- FUNCTION: Detect document contour ---
|
| 198 |
+
# def detect_document_contour(image):
|
| 199 |
+
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 200 |
+
# blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 201 |
+
# _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 202 |
+
# contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
| 203 |
+
# contours = sorted(contours, key=cv2.contourArea, reverse=True)
|
| 204 |
+
|
| 205 |
+
# for contour in contours:
|
| 206 |
+
# area = cv2.contourArea(contour)
|
| 207 |
+
# if area > 1000:
|
| 208 |
+
# peri = cv2.arcLength(contour, True)
|
| 209 |
+
# approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
|
| 210 |
+
# if len(approx) == 4:
|
| 211 |
+
# return approx
|
| 212 |
+
# return None
|
| 213 |
+
|
| 214 |
+
# # --- FUNCTION: Extract images from saved PDF ---
|
| 215 |
+
# def extract_images_from_pdf(pdf_path, output_json_path):
|
| 216 |
+
# elements = partition_pdf(
|
| 217 |
+
# filename=pdf_path,
|
| 218 |
+
# poppler_path=POPPLER_PATH,
|
| 219 |
+
# strategy="hi_res",
|
| 220 |
+
# extract_image_block_types=["Image"],
|
| 221 |
+
# extract_image_block_to_payload=True,
|
| 222 |
+
# )
|
| 223 |
+
|
| 224 |
+
# with open(output_json_path, "w") as f:
|
| 225 |
+
# json.dump([element.to_dict() for element in elements], f, indent=4)
|
| 226 |
+
|
| 227 |
+
# # Display extracted images
|
| 228 |
+
# with open(output_json_path, 'r') as file:
|
| 229 |
+
# file_elements = json.load(file)
|
| 230 |
+
|
| 231 |
+
# for i, element in enumerate(file_elements):
|
| 232 |
+
# if "image_base64" in element["metadata"]:
|
| 233 |
+
# image_data = base64.b64decode(element["metadata"]["image_base64"])
|
| 234 |
+
# image = Image.open(io.BytesIO(image_data))
|
| 235 |
+
# image.show(title=f"Extracted Image {i+1}")
|
| 236 |
+
|
| 237 |
+
# # --- WEBCAM SCANNER START ---
|
| 238 |
+
# # cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
|
| 239 |
+
# cap = cv2.VideoCapture("http://100.71.6.36:8080/video")
|
| 240 |
+
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
|
| 241 |
+
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
|
| 242 |
+
|
| 243 |
+
# scale = 0.5
|
| 244 |
+
# count = 0
|
| 245 |
+
|
| 246 |
+
# while True:
|
| 247 |
+
# ret, frame = cap.read()
|
| 248 |
+
# if not ret:
|
| 249 |
+
# break
|
| 250 |
+
|
| 251 |
+
# frame = cv2.rotate(frame, cv2.ROTATE_180)
|
| 252 |
+
# display = frame.copy()
|
| 253 |
+
|
| 254 |
+
# contour = detect_document_contour(display)
|
| 255 |
+
# if contour is not None:
|
| 256 |
+
# cv2.drawContours(display, [contour], -1, (0, 255, 0), 3)
|
| 257 |
+
|
| 258 |
+
# cv2.imshow("Document Scanner", cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0]))))
|
| 259 |
+
|
| 260 |
+
# key = cv2.waitKey(1) & 0xFF
|
| 261 |
+
|
| 262 |
+
# if key == 27: # ESC to exit
|
| 263 |
+
# break
|
| 264 |
+
|
| 265 |
+
# elif key == ord('s') and contour is not None:
|
| 266 |
+
# warped = four_point_transform(frame, contour.reshape(4, 2))
|
| 267 |
+
|
| 268 |
+
# image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg")
|
| 269 |
+
# pdf_path = os.path.join(PDF_FOLDER_PATH, f"scanned_colored_{count}.pdf")
|
| 270 |
+
# json_path = os.path.join(JSON_OUTPUT_FOLDER, f"embedded_images_{count}.json")
|
| 271 |
+
|
| 272 |
+
# # Save Image
|
| 273 |
+
# cv2.imwrite(image_path, warped)
|
| 274 |
+
# print(f"[INFO] Saved image: {image_path}")
|
| 275 |
+
|
| 276 |
+
# # Convert to PDF
|
| 277 |
+
# img = Image.open(image_path)
|
| 278 |
+
# img_rgb = img.convert("RGB")
|
| 279 |
+
# img_rgb.save(pdf_path)
|
| 280 |
+
# print(f"[INFO] Converted to PDF: {pdf_path}")
|
| 281 |
+
|
| 282 |
+
# # Extract and show embedded images from PDF
|
| 283 |
+
# print(f"[INFO] Extracting embedded images from PDF...")
|
| 284 |
+
# extract_images_from_pdf(pdf_path, json_path)
|
| 285 |
+
|
| 286 |
+
# count += 1
|
| 287 |
+
|
| 288 |
+
# cap.release()
|
| 289 |
+
# cv2.destroyAllWindows()
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
'''
|
| 294 |
+
#==================================================================================#
|
| 295 |
+
# Extract Images from PDF #
|
| 296 |
+
#==================================================================================#
|
| 297 |
+
from unstructured.partition.pdf import partition_pdf
|
| 298 |
+
import pytesseract
|
| 299 |
+
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 300 |
+
|
| 301 |
+
elements = partition_pdf(
|
| 302 |
+
filename=r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\page1.pdf",
|
| 303 |
+
poppler_path=r"C:\poppler-23.11.0\Library\bin",
|
| 304 |
+
strategy="hi_res",
|
| 305 |
+
extract_image_block_types=["Image"], # or ["Image", "Table"]
|
| 306 |
+
extract_image_block_to_payload=True, # Set to True to get base64 in output
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
import json, base64, io, os
|
| 310 |
+
from PIL import Image
|
| 311 |
+
|
| 312 |
+
# Save JSON output
|
| 313 |
+
os.makedirs("output", exist_ok=True)
|
| 314 |
+
with open("output/embedded-images-tables.json", "w") as f:
|
| 315 |
+
json.dump([element.to_dict() for element in elements], f, indent=4)
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def get_image_block_types(input_json_file_path: str):
|
| 319 |
+
with open(input_json_file_path, 'r') as file:
|
| 320 |
+
file_elements = json.load(file)
|
| 321 |
+
|
| 322 |
+
for element in file_elements:
|
| 323 |
+
if "image_base64" in element["metadata"]:
|
| 324 |
+
image_data = base64.b64decode(element["metadata"]["image_base64"])
|
| 325 |
+
image = Image.open(io.BytesIO(image_data))
|
| 326 |
+
image.show()
|
| 327 |
+
|
| 328 |
+
# Example usage:
|
| 329 |
+
get_image_block_types("output/embedded-images-tables.json")'''
|
| 330 |
+
|
| 331 |
+
# from unstructured_client import UnstructuredClient
|
| 332 |
+
# from unstructured_client.models import operations, shared
|
| 333 |
+
# from unstructured.staging.base import elements_from_dicts, elements_to_json
|
| 334 |
+
|
| 335 |
+
# import os
|
| 336 |
+
# import base64
|
| 337 |
+
# from PIL import Image
|
| 338 |
+
# import io
|
| 339 |
+
|
| 340 |
+
# if __name__ == "__main__":
|
| 341 |
+
# client = UnstructuredClient(
|
| 342 |
+
# api_key_auth=os.getenv("UNSTRUCTURED_API_KEY")
|
| 343 |
+
# )
|
| 344 |
+
|
| 345 |
+
# # Path to your PDF file
|
| 346 |
+
# local_input_filepath = "your-pdf-file.pdf"
|
| 347 |
+
# local_output_filepath = "output.json"
|
| 348 |
+
|
| 349 |
+
# with open(local_input_filepath, "rb") as f:
|
| 350 |
+
# files = shared.Files(
|
| 351 |
+
# content=f.read(),
|
| 352 |
+
# file_name=local_input_filepath
|
| 353 |
+
# )
|
| 354 |
+
|
| 355 |
+
# request = operations.PartitionRequest(
|
| 356 |
+
# shared.PartitionParameters(
|
| 357 |
+
# files=files,
|
| 358 |
+
# split_pdf_page=True,
|
| 359 |
+
# split_pdf_allow_failed=True,
|
| 360 |
+
# split_pdf_concurrency_level=15,
|
| 361 |
+
# # Extract Base64-encoded images and tables
|
| 362 |
+
# extract_image_block_types=["Image", "Table"]
|
| 363 |
+
# )
|
| 364 |
+
# )
|
| 365 |
+
|
| 366 |
+
# try:
|
| 367 |
+
# result = client.general.partition(request=request)
|
| 368 |
+
|
| 369 |
+
# for element in result.elements:
|
| 370 |
+
# if "image_base64" in element["metadata"]:
|
| 371 |
+
# # Decode and display the image
|
| 372 |
+
# image_data = base64.b64decode(element["metadata"]["image_base64"])
|
| 373 |
+
# image = Image.open(io.BytesIO(image_data))
|
| 374 |
+
# image.show() # This will open the image
|
| 375 |
+
|
| 376 |
+
# # Save results as JSON
|
| 377 |
+
# dict_elements = elements_from_dicts(element_dicts=result.elements)
|
| 378 |
+
# elements_to_json(
|
| 379 |
+
# elements=dict_elements,
|
| 380 |
+
# indent=2,
|
| 381 |
+
# filename=local_output_filepath
|
| 382 |
+
# )
|
| 383 |
+
# except Exception as e:
|
| 384 |
+
# print(e)
|
| 385 |
+
|
| 386 |
+
# -------------------------------------------------------------------------------------- #
|
| 387 |
+
|
| 388 |
+
# # STEP 1
|
| 389 |
+
# # import libraries
|
| 390 |
+
# import fitz # PyMuPDF
|
| 391 |
+
# import io
|
| 392 |
+
# from PIL import Image
|
| 393 |
+
|
| 394 |
+
# # STEP 2
|
| 395 |
+
# # file path you want to extract images from
|
| 396 |
+
# file = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images/page1_orig.pdf"
|
| 397 |
+
|
| 398 |
+
# # open the file
|
| 399 |
+
# pdf_file = fitz.open(file)
|
| 400 |
+
|
| 401 |
+
# # STEP 3
|
| 402 |
+
# # iterate over PDF pages
|
| 403 |
+
# for page_index in range(len(pdf_file)):
|
| 404 |
+
|
| 405 |
+
# # get the page itself
|
| 406 |
+
# page = pdf_file.load_page(page_index) # load the page
|
| 407 |
+
# image_list = page.get_images(full=True) # get images on the page
|
| 408 |
+
|
| 409 |
+
# # printing number of images found in this page
|
| 410 |
+
# if image_list:
|
| 411 |
+
# print(f"[+] Found a total of {len(image_list)} images on page {page_index}")
|
| 412 |
+
# else:
|
| 413 |
+
# print("[!] No images found on page", page_index)
|
| 414 |
+
|
| 415 |
+
# for image_index, img in enumerate(image_list, start=1):
|
| 416 |
+
# # get the XREF of the image
|
| 417 |
+
# xref = img[0]
|
| 418 |
+
|
| 419 |
+
# # extract the image bytes
|
| 420 |
+
# base_image = pdf_file.extract_image(xref)
|
| 421 |
+
# image_bytes = base_image["image"]
|
| 422 |
+
|
| 423 |
+
# # get the image extension
|
| 424 |
+
# image_ext = base_image["ext"]
|
| 425 |
+
|
| 426 |
+
# # save the image
|
| 427 |
+
# image_name = f"image{page_index+1}_{image_index}.{image_ext}"
|
| 428 |
+
# with open(image_name, "wb") as image_file:
|
| 429 |
+
# image_file.write(image_bytes)
|
| 430 |
+
# print(f"[+] Image saved as {image_name}")
|
| 431 |
+
|
| 432 |
+
# -------------------------------------------------------------------------------------- #
|
| 433 |
+
|
| 434 |
+
# from pdf2image import convert_from_path
|
| 435 |
+
# import numpy as np
|
| 436 |
+
# import cv2
|
| 437 |
+
|
| 438 |
+
# def extract_grid_cells_from_pdf(pdf_path, prefix="sub"):
|
| 439 |
+
# # Convert PDF's first page to image
|
| 440 |
+
# pages = convert_from_path(
|
| 441 |
+
# pdf_path,
|
| 442 |
+
# dpi=300,
|
| 443 |
+
# poppler_path=r"C:\poppler-23.11.0\Library\bin"
|
| 444 |
+
# )
|
| 445 |
+
# pil = pages[0]
|
| 446 |
+
# img = np.array(pil)[:, :, ::-1] # RGB→BGR
|
| 447 |
+
|
| 448 |
+
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 449 |
+
# _, thresh = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)
|
| 450 |
+
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
|
| 451 |
+
# dil = cv2.dilate(thresh, kernel, iterations=2)
|
| 452 |
+
|
| 453 |
+
# cnts, _ = cv2.findContours(dil, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 454 |
+
# cells = [cv2.boundingRect(c) for c in cnts if cv2.contourArea(c) > 1000]
|
| 455 |
+
# cells = sorted(cells, key=lambda r: (r[1], r[0]))
|
| 456 |
+
|
| 457 |
+
# for i, (x, y, w, h) in enumerate(cells):
|
| 458 |
+
# crop = img[y:y+h, x:x+w]
|
| 459 |
+
# cv2.imwrite(f"{prefix}_{i:02d}.png", crop)
|
| 460 |
+
# print("Saved", f"{prefix}_{i:02d}.png")
|
| 461 |
+
|
| 462 |
+
# if __name__ == "__main__":
|
| 463 |
+
# extract_grid_cells_from_pdf(
|
| 464 |
+
# r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\page1_orig.pdf"
|
| 465 |
+
# )
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
# import cv2
|
| 469 |
+
# import layoutparser as lp
|
| 470 |
+
# from pdf2image import convert_from_path
|
| 471 |
+
# from reportlab.pdfgen import canvas
|
| 472 |
+
# from reportlab.lib.pagesizes import letter
|
| 473 |
+
# import numpy as np
|
| 474 |
+
# import tempfile
|
| 475 |
+
# import os
|
| 476 |
+
|
| 477 |
+
# # 1️⃣ Setup LayoutParser model
|
| 478 |
+
# model = lp.Detectron2LayoutModel(
|
| 479 |
+
# "lp://PrimaLayout/PrimaLayout/mask_rcnn_R_50_FPN_3x/config",
|
| 480 |
+
# label_map={0: "Text", 1: "Title", 2: "List", 3: "Table", 4: "Figure"}
|
| 481 |
+
# )
|
| 482 |
+
|
| 483 |
+
# # 2️⃣ Utility to crop and save a layout region
|
| 484 |
+
# def crop_and_save(img, block, out_dir, idx):
|
| 485 |
+
# x1, y1, x2, y2 = map(int, block.block.x_1_y_2_x_2_y_2)
|
| 486 |
+
# cropped = img[y1:y2, x1:x2]
|
| 487 |
+
# path = os.path.join(out_dir, f"crop_{idx}.png")
|
| 488 |
+
# cv2.imwrite(path, cropped)
|
| 489 |
+
# return path
|
| 490 |
+
|
| 491 |
+
# # 3️⃣ Convert cropped images into multi-page PDF
|
| 492 |
+
# def imgs_to_pdf(img_paths, output_pdf):
|
| 493 |
+
# c = canvas.Canvas(output_pdf, pagesize=letter)
|
| 494 |
+
# w, h = letter
|
| 495 |
+
# for img in img_paths:
|
| 496 |
+
# c.drawImage(img, 0, 0, width=w, height=h)
|
| 497 |
+
# c.showPage()
|
| 498 |
+
# c.save()
|
| 499 |
+
|
| 500 |
+
# # 4️⃣ If user input is a PDF or image folder
|
| 501 |
+
# def process_document(pdf_path, output_pdf):
|
| 502 |
+
# imgs = convert_from_path(pdf_path)
|
| 503 |
+
# cropped_paths = []
|
| 504 |
+
# with tempfile.TemporaryDirectory() as tmp:
|
| 505 |
+
# for page_idx, pil_im in enumerate(imgs):
|
| 506 |
+
# img = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
|
| 507 |
+
# layout = model.detect(img)
|
| 508 |
+
# for idx, block in enumerate(layout):
|
| 509 |
+
# path = crop_and_save(img, block, tmp, f"{page_idx}_{idx}")
|
| 510 |
+
# cropped_paths.append(path)
|
| 511 |
+
# imgs_to_pdf(cropped_paths, output_pdf)
|
| 512 |
+
|
| 513 |
+
# # 5️⃣ Real-time camera/video feed
|
| 514 |
+
# def process_video(output_pdf, src=0, frame_limit=100):
|
| 515 |
+
# cap = cv2.VideoCapture(src)
|
| 516 |
+
# idx = 0
|
| 517 |
+
# cropped_paths = []
|
| 518 |
+
# with tempfile.TemporaryDirectory() as tmp:
|
| 519 |
+
# while idx < frame_limit:
|
| 520 |
+
# ret, img = cap.read()
|
| 521 |
+
# if not ret:
|
| 522 |
+
# break
|
| 523 |
+
# layout = model.detect(img)
|
| 524 |
+
# for i, block in enumerate(layout):
|
| 525 |
+
# path = crop_and_save(img, block, tmp, f"{idx}_{i}")
|
| 526 |
+
# cropped_paths.append(path)
|
| 527 |
+
# idx += 1
|
| 528 |
+
# cap.release()
|
| 529 |
+
# imgs_to_pdf(cropped_paths, output_pdf)
|
| 530 |
+
|
| 531 |
+
# if __name__ == "__main__":
|
| 532 |
+
# import argparse
|
| 533 |
+
|
| 534 |
+
# ap = argparse.ArgumentParser()
|
| 535 |
+
# ap.add_argument("--input", required=True,
|
| 536 |
+
# help="path to PDF or 'cam' for camera")
|
| 537 |
+
# ap.add_argument("--output", required=True, help="output PDF path")
|
| 538 |
+
# ap.add_argument("--frames", type=int, default=50,
|
| 539 |
+
# help="frames to scan if using camera")
|
| 540 |
+
# args = ap.parse_args()
|
| 541 |
+
|
| 542 |
+
# if args.input.lower().endswith(".pdf"):
|
| 543 |
+
# process_document(args.input, args.output)
|
| 544 |
+
# elif args.input.lower() == "cam":
|
| 545 |
+
# process_video(args.output, src=0, frame_limit=args.frames)
|
| 546 |
+
# else:
|
| 547 |
+
# print("Unsupported input. Use PDF path or 'cam'.")
|
| 548 |
+
|
| 549 |
+
# import cv2
|
| 550 |
+
# from PIL import Image
|
| 551 |
+
# import numpy as np
|
| 552 |
+
|
| 553 |
+
# def get_contours(frame):
|
| 554 |
+
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 555 |
+
# # Threshold to binary
|
| 556 |
+
# _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
|
| 557 |
+
# # Find contours
|
| 558 |
+
# contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 559 |
+
# return contours
|
| 560 |
+
|
| 561 |
+
# def extract_regions(frame, contours):
|
| 562 |
+
# rois = []
|
| 563 |
+
# for cnt in contours:
|
| 564 |
+
# x, y, w, h = cv2.boundingRect(cnt)
|
| 565 |
+
# if w*h < 1000: # skip small noise
|
| 566 |
+
# continue
|
| 567 |
+
# roi = frame[y:y+h, x:x+w]
|
| 568 |
+
# rois.append(roi)
|
| 569 |
+
# return rois
|
| 570 |
+
|
| 571 |
+
# def save_rois_as_pdf(rois, output_path):
|
| 572 |
+
# pil_imgs = []
|
| 573 |
+
# for roi in rois:
|
| 574 |
+
# rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
|
| 575 |
+
# pil = Image.fromarray(rgb)
|
| 576 |
+
# pil_imgs.append(pil)
|
| 577 |
+
# if pil_imgs:
|
| 578 |
+
# pil_imgs[0].save(output_path, save_all=True, append_images=pil_imgs[1:])
|
| 579 |
+
# print(f"Saved {len(pil_imgs)} regions to {output_path}")
|
| 580 |
+
|
| 581 |
+
# def main():
|
| 582 |
+
# cap = cv2.VideoCapture(0)
|
| 583 |
+
# all_rois = []
|
| 584 |
+
# print("Press 'c' to capture and extract; 'q' to quit.")
|
| 585 |
+
|
| 586 |
+
# while True:
|
| 587 |
+
# ret, frame = cap.read()
|
| 588 |
+
# if not ret:
|
| 589 |
+
# break
|
| 590 |
+
# cv2.imshow("Live Feed", frame)
|
| 591 |
+
|
| 592 |
+
# key = cv2.waitKey(1) & 0xFF
|
| 593 |
+
# if key == ord('c'):
|
| 594 |
+
# contours = get_contours(frame)
|
| 595 |
+
# rois = extract_regions(frame, contours)
|
| 596 |
+
# all_rois.extend(rois)
|
| 597 |
+
# print(f"Captured {len(rois)} regions.")
|
| 598 |
+
# elif key == ord('q'):
|
| 599 |
+
# break
|
| 600 |
+
|
| 601 |
+
# cap.release()
|
| 602 |
+
# cv2.destroyAllWindows()
|
| 603 |
+
|
| 604 |
+
# if all_rois:
|
| 605 |
+
# save_rois_as_pdf(all_rois, "output_contours.pdf")
|
| 606 |
+
# else:
|
| 607 |
+
# print("No regions captured.")
|
| 608 |
+
|
| 609 |
+
# if __name__ == "__main__":
|
| 610 |
+
# main()
|
| 611 |
+
|
| 612 |
+
# import cv2
|
| 613 |
+
# from PIL import Image
|
| 614 |
+
# import numpy as np
|
| 615 |
+
|
| 616 |
+
# def get_edge_contours(frame, low=50, high=150):
|
| 617 |
+
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 618 |
+
# blurred = cv2.GaussianBlur(gray, (5, 5), 1.0)
|
| 619 |
+
# edges = cv2.Canny(blurred, low, high)
|
| 620 |
+
# contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 621 |
+
# return contours, edges
|
| 622 |
+
|
| 623 |
+
# def extract_edge_rois(frame, contours, min_area=1000):
|
| 624 |
+
# rois = []
|
| 625 |
+
# for cnt in contours:
|
| 626 |
+
# x, y, w, h = cv2.boundingRect(cnt)
|
| 627 |
+
# if w * h < min_area:
|
| 628 |
+
# continue
|
| 629 |
+
# roi = frame[y:y+h, x:x+w]
|
| 630 |
+
# rois.append(roi)
|
| 631 |
+
# return rois
|
| 632 |
+
|
| 633 |
+
# def save_rois_as_pdf(rois, output_path):
|
| 634 |
+
# pil_imgs = []
|
| 635 |
+
# for roi in rois:
|
| 636 |
+
# rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
|
| 637 |
+
# pil_imgs.append(Image.fromarray(rgb))
|
| 638 |
+
# if pil_imgs:
|
| 639 |
+
# pil_imgs[0].save(output_path, save_all=True, append_images=pil_imgs[1:])
|
| 640 |
+
# print(f"✅ Saved {len(pil_imgs)} edge-region(s) to {output_path}")
|
| 641 |
+
# else:
|
| 642 |
+
# print("⚠️ No edge-based regions detected—PDF not created.")
|
| 643 |
+
|
| 644 |
+
# def main():
|
| 645 |
+
# cap = cv2.VideoCapture(0)
|
| 646 |
+
# all_rois = []
|
| 647 |
+
# print("Press ‘c’ to capture current edge regions, ‘q’ to quit.")
|
| 648 |
+
|
| 649 |
+
# while True:
|
| 650 |
+
# ret, frame = cap.read()
|
| 651 |
+
# if not ret:
|
| 652 |
+
# break
|
| 653 |
+
|
| 654 |
+
# contours, edges = get_edge_contours(frame)
|
| 655 |
+
# cv2.imshow("Live Feed", frame)
|
| 656 |
+
# cv2.imshow("Edges", edges)
|
| 657 |
+
|
| 658 |
+
# key = cv2.waitKey(1) & 0xFF
|
| 659 |
+
# if key == ord('c'):
|
| 660 |
+
# rois = extract_edge_rois(frame, contours)
|
| 661 |
+
# all_rois.extend(rois)
|
| 662 |
+
# print(f"🔄 Captured {len(rois)} edge-region(s). Total: {len(all_rois)}")
|
| 663 |
+
# elif key == ord('q'):
|
| 664 |
+
# break
|
| 665 |
+
|
| 666 |
+
# cap.release()
|
| 667 |
+
# cv2.destroyAllWindows()
|
| 668 |
+
|
| 669 |
+
# if all_rois:
|
| 670 |
+
# save_rois_as_pdf(all_rois, "edge_contours.pdf")
|
| 671 |
+
# else:
|
| 672 |
+
# print("❌ No regions captured.")
|
| 673 |
+
|
| 674 |
+
# if __name__ == "__main__":
|
| 675 |
+
# main()
|
| 676 |
+
|
| 677 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
opencv-python
|
| 3 |
+
pillow
|
| 4 |
+
imutils
|
| 5 |
+
unstructured
|
| 6 |
+
pytesseract
|
templates/index.html
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
|
| 4 |
+
<head>
|
| 5 |
+
<meta charset="UTF-8">
|
| 6 |
+
<title>Real-Time Document Scanner</title>
|
| 7 |
+
</head>
|
| 8 |
+
|
| 9 |
+
<body style="font-family:sans-serif;text-align:center">
|
| 10 |
+
<h1>📄 Real-Time Document Scanner</h1>
|
| 11 |
+
|
| 12 |
+
{% with messages = get_flashed_messages(with_categories=true) %}
|
| 13 |
+
{% for category, message in messages %}
|
| 14 |
+
{% if category == 'error' %}
|
| 15 |
+
<p style="color: red;">{{ message }}</p>
|
| 16 |
+
{% else %}
|
| 17 |
+
<p style="color: green;">{{ message }}</p>
|
| 18 |
+
{% endif %}
|
| 19 |
+
{% endfor %}
|
| 20 |
+
{% endwith %}
|
| 21 |
+
|
| 22 |
+
<form action="/scan">
|
| 23 |
+
<button style="padding:15px 30px;font-size:18px">📷 Scan Document</button>
|
| 24 |
+
</form>
|
| 25 |
+
</body>
|
| 26 |
+
|
| 27 |
+
</html>
|