Update app_main.py
Browse files- app_main.py +177 -90
app_main.py
CHANGED
|
@@ -7,24 +7,25 @@ from PIL import Image, ImageEnhance, ImageDraw
|
|
| 7 |
from imutils.perspective import four_point_transform
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
import pytesseract
|
| 10 |
-
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 11 |
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
|
| 12 |
from werkzeug.utils import secure_filename
|
| 13 |
-
import tempfile
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
handlers=[
|
| 22 |
-
logging.FileHandler("app.log"),
|
| 23 |
-
logging.StreamHandler()
|
| 24 |
-
]
|
| 25 |
)
|
| 26 |
|
| 27 |
-
|
| 28 |
|
| 29 |
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 30 |
poppler_path=r"C:\poppler-23.11.0\Library\bin"
|
|
@@ -41,99 +42,185 @@ for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_
|
|
| 41 |
os.makedirs(path, exist_ok=True)
|
| 42 |
|
| 43 |
# Model Initialization
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# SmolVLM Image Captioning functioning
|
| 48 |
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
# --- FUNCTION: Extract images from saved PDF ---
|
| 62 |
def extract_images_from_pdf(pdf_path, output_json_path):
|
| 63 |
''' Extract images from PDF and generate structured sprite JSON '''
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
if "image_base64" in element["metadata"]:
|
| 114 |
-
image_data = base64.b64decode(element["metadata"]["image_base64"])
|
| 115 |
-
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 116 |
-
image.show(title=f"Extracted Image {i+1}")
|
| 117 |
-
image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
|
| 118 |
-
image.save(image_path)
|
| 119 |
-
|
| 120 |
-
description = get_smolvlm_caption(image, prompt="Give a brief Description")
|
| 121 |
-
name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
|
| 122 |
-
|
| 123 |
-
manipulated_json[f"Sprite {sprite_count}"] = {
|
| 124 |
-
"name": name,
|
| 125 |
-
"base64": element["metadata"]["image_base64"],
|
| 126 |
-
"file-path": pdf_dir_path,
|
| 127 |
-
"description":description
|
| 128 |
-
}
|
| 129 |
-
sprite_count += 1
|
| 130 |
-
|
| 131 |
-
# Save manipulated JSON
|
| 132 |
-
with open(final_json_path, "w") as sprite_file:
|
| 133 |
-
json.dump(manipulated_json, sprite_file, indent=4)
|
| 134 |
-
|
| 135 |
-
print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
|
| 136 |
-
return final_json_path, manipulated_json
|
| 137 |
|
| 138 |
@app.route('/')
|
| 139 |
def index():
|
|
|
|
| 7 |
from imutils.perspective import four_point_transform
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
import pytesseract
|
| 10 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
|
| 11 |
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
|
| 12 |
from werkzeug.utils import secure_filename
|
| 13 |
+
import tempfile
|
| 14 |
+
import torch
|
| 15 |
+
from langchain_groq import ChatGroq
|
| 16 |
+
from langgraph.prebuilt import create_react_agent
|
| 17 |
|
| 18 |
+
load_dotenv()
|
| 19 |
+
# os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 20 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 21 |
|
| 22 |
+
llm = ChatGroq(
|
| 23 |
+
model="meta-llama/llama-4-maverick-17b-128e-instruct",
|
| 24 |
+
temperature=0,
|
| 25 |
+
max_tokens=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
+
app = Flask(__name__)
|
| 29 |
|
| 30 |
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 31 |
poppler_path=r"C:\poppler-23.11.0\Library\bin"
|
|
|
|
| 42 |
os.makedirs(path, exist_ok=True)
|
| 43 |
|
| 44 |
# Model Initialization
|
| 45 |
+
try:
|
| 46 |
+
smolvlm256m_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct")
|
| 47 |
+
# smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
|
| 48 |
+
smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
|
| 49 |
+
"HuggingFaceTB/SmolVLM-256M-Instruct",
|
| 50 |
+
torch_dtype=torch.bfloat16 if hasattr(torch, "bfloat16") else torch.float32,
|
| 51 |
+
_attn_implementation="eager"
|
| 52 |
+
).to("cpu")
|
| 53 |
+
except Exception as e:
|
| 54 |
+
raise RuntimeError(f"❌ Failed to load SmolVLM model: {str(e)}")
|
| 55 |
|
| 56 |
# SmolVLM Image Captioning functioning
|
| 57 |
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
|
| 58 |
+
try:
|
| 59 |
+
# Ensure exactly one <image> token
|
| 60 |
+
if "<image>" not in prompt:
|
| 61 |
+
prompt = f"<image> {prompt.strip()}"
|
| 62 |
+
|
| 63 |
+
num_image_tokens = prompt.count("<image>")
|
| 64 |
+
if num_image_tokens != 1:
|
| 65 |
+
raise ValueError(f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
|
| 66 |
+
|
| 67 |
+
inputs = smolvlm256m_processor(images=[image], text=[prompt], return_tensors="pt").to("cpu")
|
| 68 |
+
output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
|
| 69 |
+
return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return f"❌ Error during caption generation: {str(e)}"
|
| 72 |
|
| 73 |
# --- FUNCTION: Extract images from saved PDF ---
|
| 74 |
def extract_images_from_pdf(pdf_path, output_json_path):
|
| 75 |
''' Extract images from PDF and generate structured sprite JSON '''
|
| 76 |
|
| 77 |
+
try:
|
| 78 |
+
pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0] # e.g., "scratch_crab"
|
| 79 |
+
pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
|
| 80 |
+
|
| 81 |
+
# Create subfolders
|
| 82 |
+
extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
|
| 83 |
+
json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
|
| 84 |
+
os.makedirs(extracted_image_subdir, exist_ok=True)
|
| 85 |
+
os.makedirs(json_subdir, exist_ok=True)
|
| 86 |
+
|
| 87 |
+
# Output paths
|
| 88 |
+
output_json_path = os.path.join(json_subdir, "extracted.json")
|
| 89 |
+
final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
|
| 90 |
|
| 91 |
+
try:
|
| 92 |
+
elements = partition_pdf(
|
| 93 |
+
filename=pdf_path,
|
| 94 |
+
strategy="hi_res",
|
| 95 |
+
extract_image_block_types=["Image"],
|
| 96 |
+
extract_image_block_to_payload=True, # Set to True to get base64 in output
|
| 97 |
+
)
|
| 98 |
+
except Exception as e:
|
| 99 |
+
raise RuntimeError(f"❌ Failed to extract images from PDF: {str(e)}")
|
| 100 |
|
| 101 |
+
try:
|
| 102 |
+
with open(output_json_path, "w") as f:
|
| 103 |
+
json.dump([element.to_dict() for element in elements], f, indent=4)
|
| 104 |
+
except Exception as e:
|
| 105 |
+
raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
# Display extracted images
|
| 109 |
+
with open(output_json_path, 'r') as file:
|
| 110 |
+
file_elements = json.load(file)
|
| 111 |
+
except Exception as e:
|
| 112 |
+
raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
|
| 113 |
|
| 114 |
+
# Prepare manipulated sprite JSON structure
|
| 115 |
+
manipulated_json = {}
|
| 116 |
+
|
| 117 |
+
# SET A SYSTEM PROMPT
|
| 118 |
+
system_prompt = """
|
| 119 |
+
You are an expert in visual scene understanding.
|
| 120 |
+
Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
|
| 121 |
+
|
| 122 |
+
Guidelines:
|
| 123 |
+
- Focus only the images given in Square Shape.
|
| 124 |
+
- Don't Consider Blank areas in Image as.
|
| 125 |
+
- Don't include generic summary or explanation outside the fields.
|
| 126 |
+
Return only string.
|
| 127 |
+
"""
|
| 128 |
|
| 129 |
+
agent = create_react_agent(
|
| 130 |
+
model = llm,
|
| 131 |
+
tools = [],
|
| 132 |
+
prompt = system_prompt
|
| 133 |
+
)
|
| 134 |
|
| 135 |
+
# If JSON already exists, load it and find the next available Sprite number
|
| 136 |
+
if os.path.exists(final_json_path):
|
| 137 |
+
with open(final_json_path, "r") as existing_file:
|
| 138 |
+
manipulated = json.load(existing_file)
|
| 139 |
+
# Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
|
| 140 |
+
existing_keys = [int(k.replace("Sprite ", "")) for k in manipulated.keys()]
|
| 141 |
+
start_count = max(existing_keys, default=0) + 1
|
| 142 |
+
else:
|
| 143 |
+
start_count = 1
|
| 144 |
+
|
| 145 |
+
sprite_count = start_count
|
| 146 |
+
for i,element in enumerate(file_elements):
|
| 147 |
+
if "image_base64" in element["metadata"]:
|
| 148 |
+
try:
|
| 149 |
+
image_data = base64.b64decode(element["metadata"]["image_base64"])
|
| 150 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 151 |
+
image.show(title=f"Extracted Image {i+1}")
|
| 152 |
+
image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
|
| 153 |
+
image.save(image_path)
|
| 154 |
+
with open(image_path, "rb") as image_file:
|
| 155 |
+
image_bytes = image_file.read()
|
| 156 |
+
img_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
| 157 |
+
# description = get_smolvlm_caption(image, prompt="Give a brief Description")
|
| 158 |
+
# name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
|
| 159 |
+
def clean_caption_output(raw_output: str, prompt: str) -> str:
|
| 160 |
+
answer = raw_output.replace(prompt, '').replace("<image>", '').strip(" :-\n")
|
| 161 |
+
return answer
|
| 162 |
|
| 163 |
+
prompt_description = "Give a brief Captioning."
|
| 164 |
+
prompt_name = "give a short name caption of this Image."
|
| 165 |
+
|
| 166 |
+
content1 = [
|
| 167 |
+
{
|
| 168 |
+
"type": "text",
|
| 169 |
+
"text": f"{prompt_description}"
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"type": "image_url",
|
| 173 |
+
"image_url": {
|
| 174 |
+
"url": f"data:image/jpeg;base64,{img_base64}"
|
| 175 |
+
}
|
| 176 |
+
}
|
| 177 |
+
]
|
| 178 |
+
response1 = agent.invoke({"messages": [{"role": "user", "content":content1}]})
|
| 179 |
+
print(response1)
|
| 180 |
+
description = response1["messages"][-1].content
|
| 181 |
+
|
| 182 |
+
content2 = [
|
| 183 |
+
{
|
| 184 |
+
"type": "text",
|
| 185 |
+
"text": f"{prompt_name}"
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"type": "image_url",
|
| 189 |
+
"image_url": {
|
| 190 |
+
"url": f"data:image/jpeg;base64,{img_base64}"
|
| 191 |
+
}
|
| 192 |
+
}
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
response2 = agent.invoke({"messages": [{"role": "user", "content":content2}]})
|
| 196 |
+
print(response2)
|
| 197 |
+
name = response2["messages"][-1].content
|
| 198 |
+
|
| 199 |
+
#raw_description = get_smolvlm_caption(image, prompt=prompt_description)
|
| 200 |
+
#raw_name = get_smolvlm_caption(image, prompt=prompt_name)
|
| 201 |
+
|
| 202 |
+
#description = clean_caption_output(raw_description, prompt_description)
|
| 203 |
+
#name = clean_caption_output(raw_name, prompt_name)
|
| 204 |
+
|
| 205 |
+
manipulated_json[f"Sprite {sprite_count}"] = {
|
| 206 |
+
"name": name,
|
| 207 |
+
"base64": element["metadata"]["image_base64"],
|
| 208 |
+
"file-path": pdf_dir_path,
|
| 209 |
+
"description":description
|
| 210 |
+
}
|
| 211 |
+
sprite_count += 1
|
| 212 |
+
except Exception as e:
|
| 213 |
+
print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")
|
| 214 |
+
|
| 215 |
+
# Save manipulated JSON
|
| 216 |
+
with open(final_json_path, "w") as sprite_file:
|
| 217 |
+
json.dump(manipulated_json, sprite_file, indent=4)
|
| 218 |
+
|
| 219 |
+
print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
|
| 220 |
+
return final_json_path, manipulated_json
|
| 221 |
|
| 222 |
+
except Exception as e:
|
| 223 |
+
raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
@app.route('/')
|
| 226 |
def index():
|