prthm11 commited on
Commit
9430ec2
·
verified ·
1 Parent(s): da65a6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -1044,7 +1044,7 @@ Each plan must include a **single Scratch Hat Block** (e.g., 'event_whenflagclic
1044
  """
1045
 
1046
  try:
1047
- response = agent_2.invoke({"messages": [{"role": "user", "content": planning_prompt}]})
1048
  print("Raw response from LLM [OverallPlannerNode 1]:",response)
1049
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1050
  print("Raw response from LLM [OverallPlannerNode 2]:", raw_response) # Uncomment for debugging
@@ -1347,7 +1347,7 @@ Use sprite names exactly as provided in `sprite_names` (e.g., 'Sprite1', 'soccer
1347
  - If feedback is minor, make precise, minimal improvements only.
1348
  """
1349
  try:
1350
- response = agent_2.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1351
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1352
  logger.info(f"Raw response from LLM [RefinedPlannerNode]: {raw_response[:500]}...")
1353
  # json debugging and solving
@@ -1536,7 +1536,7 @@ Example output:
1536
  ```
1537
  """
1538
  try:
1539
- response = agent_2.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1540
  llm_output = response["messages"][-1].content
1541
  llm_json = extract_json_from_llm_response(llm_output)
1542
  logger.info(f"Successfully analyze the opcode requirement for {sprite} - {event}.")
 
1044
  """
1045
 
1046
  try:
1047
+ response = agent.invoke({"messages": [{"role": "user", "content": planning_prompt}]})
1048
  print("Raw response from LLM [OverallPlannerNode 1]:",response)
1049
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1050
  print("Raw response from LLM [OverallPlannerNode 2]:", raw_response) # Uncomment for debugging
 
1347
  - If feedback is minor, make precise, minimal improvements only.
1348
  """
1349
  try:
1350
+ response = agent.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1351
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1352
  logger.info(f"Raw response from LLM [RefinedPlannerNode]: {raw_response[:500]}...")
1353
  # json debugging and solving
 
1536
  ```
1537
  """
1538
  try:
1539
+ response = agent.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1540
  llm_output = response["messages"][-1].content
1541
  llm_json = extract_json_from_llm_response(llm_output)
1542
  logger.info(f"Successfully analyze the opcode requirement for {sprite} - {event}.")