prthm11 commited on
Commit
a384e97
·
verified ·
1 Parent(s): 107067c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -49,7 +49,7 @@ class ChatOpenRouter(ChatOpenAI):
49
  **kwargs
50
  )
51
 
52
- llm = ChatOpenRouter(
53
  #model_name="deepseek/deepseek-r1-0528:free",
54
  #model_name="google/gemini-2.0-flash-exp:free",
55
  #model_name="deepseek/deepseek-v3-base:free",
@@ -89,11 +89,11 @@ load_dotenv()
89
  # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
90
  groq_api_key = os.getenv("GROQ_API_KEY")
91
 
92
- # llm = ChatGroq(
93
- # model="meta-llama/llama-4-scout-17b-16e-instruct",
94
- # temperature=0,
95
- # max_tokens=None,
96
- # )
97
 
98
  app = Flask(__name__)
99
 
@@ -267,6 +267,11 @@ agent = create_react_agent(
267
  prompt=SYSTEM_PROMPT
268
  )
269
 
 
 
 
 
 
270
  agent_json_resolver = create_react_agent(
271
  model=llm,
272
  tools=[], # No specific tools are defined here, but could be added later
@@ -1039,7 +1044,7 @@ Each plan must include a **single Scratch Hat Block** (e.g., 'event_whenflagclic
1039
  """
1040
 
1041
  try:
1042
- response = agent.invoke({"messages": [{"role": "user", "content": planning_prompt}]})
1043
  print("Raw response from LLM [OverallPlannerNode 1]:",response)
1044
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1045
  print("Raw response from LLM [OverallPlannerNode 2]:", raw_response) # Uncomment for debugging
@@ -1342,7 +1347,7 @@ Use sprite names exactly as provided in `sprite_names` (e.g., 'Sprite1', 'soccer
1342
  - If feedback is minor, make precise, minimal improvements only.
1343
  """
1344
  try:
1345
- response = agent.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1346
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1347
  logger.info(f"Raw response from LLM [RefinedPlannerNode]: {raw_response[:500]}...")
1348
  # json debugging and solving
@@ -1531,7 +1536,7 @@ Example output:
1531
  ```
1532
  """
1533
  try:
1534
- response = agent.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1535
  llm_output = response["messages"][-1].content
1536
  llm_json = extract_json_from_llm_response(llm_output)
1537
  logger.info(f"Successfully analyze the opcode requirement for {sprite} - {event}.")
 
49
  **kwargs
50
  )
51
 
52
+ llm2 = ChatOpenRouter(
53
  #model_name="deepseek/deepseek-r1-0528:free",
54
  #model_name="google/gemini-2.0-flash-exp:free",
55
  #model_name="deepseek/deepseek-v3-base:free",
 
89
  # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
90
  groq_api_key = os.getenv("GROQ_API_KEY")
91
 
92
+ llm = ChatGroq(
93
+ model="meta-llama/llama-4-scout-17b-16e-instruct",
94
+ temperature=0,
95
+ max_tokens=None,
96
+ )
97
 
98
  app = Flask(__name__)
99
 
 
267
  prompt=SYSTEM_PROMPT
268
  )
269
 
270
+ agent_2 = create_react_agent(
271
+ model=llm2,
272
+ tools=[], # No specific tools are defined here, but could be added later
273
+ prompt=SYSTEM_PROMPT
274
+ )
275
  agent_json_resolver = create_react_agent(
276
  model=llm,
277
  tools=[], # No specific tools are defined here, but could be added later
 
1044
  """
1045
 
1046
  try:
1047
+ response = agent_2.invoke({"messages": [{"role": "user", "content": planning_prompt}]})
1048
  print("Raw response from LLM [OverallPlannerNode 1]:",response)
1049
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1050
  print("Raw response from LLM [OverallPlannerNode 2]:", raw_response) # Uncomment for debugging
 
1347
  - If feedback is minor, make precise, minimal improvements only.
1348
  """
1349
  try:
1350
+ response = agent_2.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1351
  raw_response = response["messages"][-1].content#strip_noise(response["messages"][-1].content)
1352
  logger.info(f"Raw response from LLM [RefinedPlannerNode]: {raw_response[:500]}...")
1353
  # json debugging and solving
 
1536
  ```
1537
  """
1538
  try:
1539
+ response = agent_2.invoke({"messages": [{"role": "user", "content": refinement_prompt}]})
1540
  llm_output = response["messages"][-1].content
1541
  llm_json = extract_json_from_llm_response(llm_output)
1542
  logger.info(f"Successfully analyze the opcode requirement for {sprite} - {event}.")