Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
✨ mai improvements
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
- app.py +99 -41
- requirements.txt +2 -2
- summarize.py +36 -22
- utils.py +14 -0
app.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import random
|
| 3 |
import re
|
|
@@ -6,6 +10,7 @@ from pathlib import Path
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import nltk
|
|
|
|
| 9 |
from cleantext import clean
|
| 10 |
|
| 11 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
|
@@ -13,22 +18,62 @@ from utils import load_example_filenames, truncate_word_count
|
|
| 13 |
|
| 14 |
_here = Path(__file__).parent
|
| 15 |
|
| 16 |
-
nltk.download("stopwords"
|
| 17 |
|
| 18 |
logging.basicConfig(
|
| 19 |
-
level=logging.INFO, format="%(asctime)s - %(levelname)s
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def proc_submission(
|
| 24 |
input_text: str,
|
| 25 |
-
|
| 26 |
-
num_beams,
|
| 27 |
-
token_batch_length,
|
| 28 |
-
length_penalty,
|
| 29 |
-
repetition_penalty,
|
| 30 |
-
no_repeat_ngram_size,
|
| 31 |
-
max_input_length: int =
|
| 32 |
):
|
| 33 |
"""
|
| 34 |
proc_submission - a helper function for the gradio module to process submissions
|
|
@@ -41,12 +86,14 @@ def proc_submission(
|
|
| 41 |
length_penalty (float): the length penalty to use
|
| 42 |
repetition_penalty (float): the repetition penalty to use
|
| 43 |
no_repeat_ngram_size (int): the no-repeat ngram size to use
|
| 44 |
-
max_input_length (int, optional): the maximum input length to use. Defaults to
|
| 45 |
|
| 46 |
Returns:
|
| 47 |
str in HTML format, string of the summary, str of score
|
| 48 |
"""
|
| 49 |
|
|
|
|
|
|
|
| 50 |
settings = {
|
| 51 |
"length_penalty": float(length_penalty),
|
| 52 |
"repetition_penalty": float(repetition_penalty),
|
|
@@ -58,14 +105,19 @@ def proc_submission(
|
|
| 58 |
"early_stopping": True,
|
| 59 |
"do_sample": False,
|
| 60 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
st = time.perf_counter()
|
| 62 |
history = {}
|
| 63 |
clean_text = clean(input_text, lower=False)
|
| 64 |
-
max_input_length = 2048 if model_size == "base" else max_input_length
|
| 65 |
processed = truncate_word_count(clean_text, max_input_length)
|
| 66 |
|
| 67 |
if processed["was_truncated"]:
|
| 68 |
-
|
| 69 |
# create elaborate HTML warning
|
| 70 |
input_wc = re.split(r"\s+", input_text)
|
| 71 |
msg = f"""
|
|
@@ -77,7 +129,7 @@ def proc_submission(
|
|
| 77 |
logging.warning(msg)
|
| 78 |
history["WARNING"] = msg
|
| 79 |
else:
|
| 80 |
-
|
| 81 |
msg = None
|
| 82 |
|
| 83 |
if len(input_text) < 50:
|
|
@@ -95,24 +147,25 @@ def proc_submission(
|
|
| 95 |
|
| 96 |
return msg, "", []
|
| 97 |
|
| 98 |
-
_summaries =
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
batch_length=token_batch_length,
|
| 103 |
**settings,
|
| 104 |
)
|
| 105 |
-
sum_text = [
|
|
|
|
|
|
|
| 106 |
sum_scores = [
|
| 107 |
-
f"
|
| 108 |
-
for i, s in enumerate(_summaries)
|
| 109 |
]
|
| 110 |
|
| 111 |
sum_text_out = "\n".join(sum_text)
|
| 112 |
history["Summary Scores"] = "<br><br>"
|
| 113 |
scores_out = "\n".join(sum_scores)
|
| 114 |
rt = round((time.perf_counter() - st) / 60, 2)
|
| 115 |
-
|
| 116 |
html = ""
|
| 117 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
| 118 |
if msg is not None:
|
|
@@ -169,36 +222,38 @@ def load_uploaded_file(file_obj):
|
|
| 169 |
|
| 170 |
|
| 171 |
if __name__ == "__main__":
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
|
| 175 |
-
|
| 176 |
name_to_path = load_example_filenames(_here / "examples")
|
| 177 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
| 178 |
-
demo = gr.Blocks(
|
|
|
|
|
|
|
| 179 |
_examples = list(name_to_path.keys())
|
| 180 |
with demo:
|
| 181 |
-
|
| 182 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
| 183 |
gr.Markdown(
|
| 184 |
"LED models ([model card](https://huggingface.co/pszemraj/led-large-book-summary)) fine-tuned to summarize long-form text. A [space with other models can be found here](https://huggingface.co/spaces/pszemraj/document-summarization)"
|
| 185 |
)
|
| 186 |
with gr.Column():
|
| 187 |
-
|
| 188 |
gr.Markdown("## Load Inputs & Select Parameters")
|
| 189 |
gr.Markdown(
|
| 190 |
"Enter or upload text below, and it will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). "
|
| 191 |
)
|
| 192 |
with gr.Row():
|
| 193 |
-
|
| 194 |
-
choices=
|
|
|
|
|
|
|
| 195 |
)
|
| 196 |
num_beams = gr.Radio(
|
| 197 |
choices=[2, 3, 4],
|
| 198 |
label="Beam Search: # of Beams",
|
| 199 |
value=2,
|
| 200 |
)
|
| 201 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 202 |
with gr.Row():
|
| 203 |
example_name = gr.Dropdown(
|
| 204 |
_examples,
|
|
@@ -213,7 +268,8 @@ if __name__ == "__main__":
|
|
| 213 |
with gr.Row():
|
| 214 |
input_text = gr.Textbox(
|
| 215 |
lines=4,
|
| 216 |
-
|
|
|
|
| 217 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 218 |
)
|
| 219 |
with gr.Column():
|
|
@@ -250,11 +306,11 @@ if __name__ == "__main__":
|
|
| 250 |
with gr.Column():
|
| 251 |
gr.Markdown("### Advanced Settings")
|
| 252 |
with gr.Row():
|
| 253 |
-
length_penalty = gr.
|
| 254 |
minimum=0.5,
|
| 255 |
maximum=1.0,
|
| 256 |
label="length penalty",
|
| 257 |
-
|
| 258 |
step=0.05,
|
| 259 |
)
|
| 260 |
token_batch_length = gr.Radio(
|
|
@@ -264,11 +320,11 @@ if __name__ == "__main__":
|
|
| 264 |
)
|
| 265 |
|
| 266 |
with gr.Row():
|
| 267 |
-
repetition_penalty = gr.
|
| 268 |
minimum=1.0,
|
| 269 |
maximum=5.0,
|
| 270 |
label="repetition penalty",
|
| 271 |
-
|
| 272 |
step=0.1,
|
| 273 |
)
|
| 274 |
no_repeat_ngram_size = gr.Radio(
|
|
@@ -282,10 +338,10 @@ if __name__ == "__main__":
|
|
| 282 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
| 283 |
)
|
| 284 |
gr.Markdown(
|
| 285 |
-
"- The
|
| 286 |
)
|
| 287 |
gr.Markdown(
|
| 288 |
-
"-
|
| 289 |
)
|
| 290 |
gr.Markdown("---")
|
| 291 |
|
|
@@ -301,7 +357,7 @@ if __name__ == "__main__":
|
|
| 301 |
fn=proc_submission,
|
| 302 |
inputs=[
|
| 303 |
input_text,
|
| 304 |
-
|
| 305 |
num_beams,
|
| 306 |
token_batch_length,
|
| 307 |
length_penalty,
|
|
@@ -311,4 +367,6 @@ if __name__ == "__main__":
|
|
| 311 |
outputs=[output_text, summary_text, summary_scores],
|
| 312 |
)
|
| 313 |
|
| 314 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
app.py - the main application file for the gradio app
|
| 3 |
+
"""
|
| 4 |
+
import gc
|
| 5 |
import logging
|
| 6 |
import random
|
| 7 |
import re
|
|
|
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import nltk
|
| 13 |
+
import torch
|
| 14 |
from cleantext import clean
|
| 15 |
|
| 16 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
|
|
|
| 18 |
|
| 19 |
_here = Path(__file__).parent
|
| 20 |
|
| 21 |
+
nltk.download("stopwords", quiet=True)
|
| 22 |
|
| 23 |
logging.basicConfig(
|
| 24 |
+
level=logging.INFO, format="%(asctime)s - [%(levelname)s] %(name)s: %(message)s"
|
| 25 |
)
|
| 26 |
|
| 27 |
+
MODEL_OPTIONS = [
|
| 28 |
+
"pszemraj/led-large-book-summary",
|
| 29 |
+
"pszemraj/led-large-book-summary-continued",
|
| 30 |
+
"pszemraj/led-base-book-summary",
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def predict(
|
| 35 |
+
input_text: str,
|
| 36 |
+
model_name: str,
|
| 37 |
+
token_batch_length: int = 2048,
|
| 38 |
+
empty_cache: bool = True,
|
| 39 |
+
**settings,
|
| 40 |
+
) -> list:
|
| 41 |
+
"""
|
| 42 |
+
predict - helper fn to support multiple models for summarization at once
|
| 43 |
+
:param str input_text: the input text to summarize
|
| 44 |
+
:param str model_name: model name to use
|
| 45 |
+
:param int token_batch_length: the length of the token batches to use
|
| 46 |
+
:param bool empty_cache: whether to empty the cache before loading a new= model
|
| 47 |
+
:return: list of dicts with keys "summary" and "score"
|
| 48 |
+
"""
|
| 49 |
+
if torch.cuda.is_available() and empty_cache:
|
| 50 |
+
torch.cuda.empty_cache()
|
| 51 |
+
|
| 52 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
| 53 |
+
summaries = summarize_via_tokenbatches(
|
| 54 |
+
input_text,
|
| 55 |
+
model,
|
| 56 |
+
tokenizer,
|
| 57 |
+
batch_length=token_batch_length,
|
| 58 |
+
**settings,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
del model
|
| 62 |
+
del tokenizer
|
| 63 |
+
gc.collect()
|
| 64 |
+
|
| 65 |
+
return summaries
|
| 66 |
+
|
| 67 |
|
| 68 |
def proc_submission(
|
| 69 |
input_text: str,
|
| 70 |
+
model_name: str,
|
| 71 |
+
num_beams: int,
|
| 72 |
+
token_batch_length: int,
|
| 73 |
+
length_penalty: float,
|
| 74 |
+
repetition_penalty: float,
|
| 75 |
+
no_repeat_ngram_size: int,
|
| 76 |
+
max_input_length: int = 2560,
|
| 77 |
):
|
| 78 |
"""
|
| 79 |
proc_submission - a helper function for the gradio module to process submissions
|
|
|
|
| 86 |
length_penalty (float): the length penalty to use
|
| 87 |
repetition_penalty (float): the repetition penalty to use
|
| 88 |
no_repeat_ngram_size (int): the no-repeat ngram size to use
|
| 89 |
+
max_input_length (int, optional): the maximum input length to use. Defaults to 2560.
|
| 90 |
|
| 91 |
Returns:
|
| 92 |
str in HTML format, string of the summary, str of score
|
| 93 |
"""
|
| 94 |
|
| 95 |
+
logger = logging.getLogger(__name__)
|
| 96 |
+
logger.info("Processing submission")
|
| 97 |
settings = {
|
| 98 |
"length_penalty": float(length_penalty),
|
| 99 |
"repetition_penalty": float(repetition_penalty),
|
|
|
|
| 105 |
"early_stopping": True,
|
| 106 |
"do_sample": False,
|
| 107 |
}
|
| 108 |
+
|
| 109 |
+
if "base" in model_name:
|
| 110 |
+
logger.info("Updating max_input_length to for base model")
|
| 111 |
+
max_input_length = 4096
|
| 112 |
+
|
| 113 |
+
logger.info(f"max_input_length: {max_input_length}")
|
| 114 |
st = time.perf_counter()
|
| 115 |
history = {}
|
| 116 |
clean_text = clean(input_text, lower=False)
|
|
|
|
| 117 |
processed = truncate_word_count(clean_text, max_input_length)
|
| 118 |
|
| 119 |
if processed["was_truncated"]:
|
| 120 |
+
truncated_input = processed["truncated_text"]
|
| 121 |
# create elaborate HTML warning
|
| 122 |
input_wc = re.split(r"\s+", input_text)
|
| 123 |
msg = f"""
|
|
|
|
| 129 |
logging.warning(msg)
|
| 130 |
history["WARNING"] = msg
|
| 131 |
else:
|
| 132 |
+
truncated_input = input_text
|
| 133 |
msg = None
|
| 134 |
|
| 135 |
if len(input_text) < 50:
|
|
|
|
| 147 |
|
| 148 |
return msg, "", []
|
| 149 |
|
| 150 |
+
_summaries = predict(
|
| 151 |
+
input_text=truncated_input,
|
| 152 |
+
model_name=model_name,
|
| 153 |
+
token_batch_length=token_batch_length,
|
|
|
|
| 154 |
**settings,
|
| 155 |
)
|
| 156 |
+
sum_text = [
|
| 157 |
+
f"\nBatch {i}:\n\t" + s["summary"][0] for i, s in enumerate(_summaries, start=1)
|
| 158 |
+
]
|
| 159 |
sum_scores = [
|
| 160 |
+
f"\n- Batch {i}:\n\t{round(s['summary_score'],4)}"
|
| 161 |
+
for i, s in enumerate(_summaries, start=1)
|
| 162 |
]
|
| 163 |
|
| 164 |
sum_text_out = "\n".join(sum_text)
|
| 165 |
history["Summary Scores"] = "<br><br>"
|
| 166 |
scores_out = "\n".join(sum_scores)
|
| 167 |
rt = round((time.perf_counter() - st) / 60, 2)
|
| 168 |
+
logger.info(f"Runtime: {rt} minutes")
|
| 169 |
html = ""
|
| 170 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
| 171 |
if msg is not None:
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|
| 225 |
+
logger = logging.getLogger(__name__)
|
| 226 |
+
logger.info("Starting up app")
|
|
|
|
|
|
|
| 227 |
name_to_path = load_example_filenames(_here / "examples")
|
| 228 |
logging.info(f"Loaded {len(name_to_path)} examples")
|
| 229 |
+
demo = gr.Blocks(
|
| 230 |
+
title="Summarize Long-Form Text",
|
| 231 |
+
)
|
| 232 |
_examples = list(name_to_path.keys())
|
| 233 |
with demo:
|
|
|
|
| 234 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
| 235 |
gr.Markdown(
|
| 236 |
"LED models ([model card](https://huggingface.co/pszemraj/led-large-book-summary)) fine-tuned to summarize long-form text. A [space with other models can be found here](https://huggingface.co/spaces/pszemraj/document-summarization)"
|
| 237 |
)
|
| 238 |
with gr.Column():
|
|
|
|
| 239 |
gr.Markdown("## Load Inputs & Select Parameters")
|
| 240 |
gr.Markdown(
|
| 241 |
"Enter or upload text below, and it will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). "
|
| 242 |
)
|
| 243 |
with gr.Row():
|
| 244 |
+
model_name = gr.Dropdown(
|
| 245 |
+
choices=MODEL_OPTIONS,
|
| 246 |
+
value=MODEL_OPTIONS[0],
|
| 247 |
+
label="Model Name",
|
| 248 |
)
|
| 249 |
num_beams = gr.Radio(
|
| 250 |
choices=[2, 3, 4],
|
| 251 |
label="Beam Search: # of Beams",
|
| 252 |
value=2,
|
| 253 |
)
|
| 254 |
+
gr.Markdown(
|
| 255 |
+
"Load a a .txt - example or your own (_You may find [this OCR space](https://huggingface.co/spaces/pszemraj/pdf-ocr) useful_)"
|
| 256 |
+
)
|
| 257 |
with gr.Row():
|
| 258 |
example_name = gr.Dropdown(
|
| 259 |
_examples,
|
|
|
|
| 268 |
with gr.Row():
|
| 269 |
input_text = gr.Textbox(
|
| 270 |
lines=4,
|
| 271 |
+
max_lines=12,
|
| 272 |
+
label="Text to Summarize",
|
| 273 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 274 |
)
|
| 275 |
with gr.Column():
|
|
|
|
| 306 |
with gr.Column():
|
| 307 |
gr.Markdown("### Advanced Settings")
|
| 308 |
with gr.Row():
|
| 309 |
+
length_penalty = gr.Slider(
|
| 310 |
minimum=0.5,
|
| 311 |
maximum=1.0,
|
| 312 |
label="length penalty",
|
| 313 |
+
value=0.7,
|
| 314 |
step=0.05,
|
| 315 |
)
|
| 316 |
token_batch_length = gr.Radio(
|
|
|
|
| 320 |
)
|
| 321 |
|
| 322 |
with gr.Row():
|
| 323 |
+
repetition_penalty = gr.Slider(
|
| 324 |
minimum=1.0,
|
| 325 |
maximum=5.0,
|
| 326 |
label="repetition penalty",
|
| 327 |
+
value=3.5,
|
| 328 |
step=0.1,
|
| 329 |
)
|
| 330 |
no_repeat_ngram_size = gr.Radio(
|
|
|
|
| 338 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
| 339 |
)
|
| 340 |
gr.Markdown(
|
| 341 |
+
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a Colab notebook for a tutorial."
|
| 342 |
)
|
| 343 |
gr.Markdown(
|
| 344 |
+
"- **Update May 1, 2023:** Enabled faster inference times via `use_cache=True`, the number of words the model will processed has been increased! New [test model](https://huggingface.co/pszemraj/led-large-book-summary-continued) as an extension of `led-large-book-summary`."
|
| 345 |
)
|
| 346 |
gr.Markdown("---")
|
| 347 |
|
|
|
|
| 357 |
fn=proc_submission,
|
| 358 |
inputs=[
|
| 359 |
input_text,
|
| 360 |
+
model_name,
|
| 361 |
num_beams,
|
| 362 |
token_batch_length,
|
| 363 |
length_penalty,
|
|
|
|
| 367 |
outputs=[output_text, summary_text, summary_scores],
|
| 368 |
)
|
| 369 |
|
| 370 |
+
demo.launch(
|
| 371 |
+
enable_queue=True,
|
| 372 |
+
)
|
requirements.txt
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
clean-text
|
| 2 |
gradio
|
| 3 |
natsort
|
| 4 |
nltk
|
| 5 |
torch
|
| 6 |
tqdm
|
| 7 |
transformers
|
| 8 |
-
accelerate
|
|
|
|
| 1 |
+
clean-text
|
| 2 |
gradio
|
| 3 |
natsort
|
| 4 |
nltk
|
| 5 |
torch
|
| 6 |
tqdm
|
| 7 |
transformers
|
| 8 |
+
accelerate
|
summarize.py
CHANGED
|
@@ -1,30 +1,40 @@
|
|
| 1 |
import logging
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
from tqdm.auto import tqdm
|
| 5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
|
| 7 |
|
| 8 |
-
def load_model_and_tokenizer(model_name):
|
| 9 |
"""
|
| 10 |
-
load_model_and_tokenizer - a
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
model_name (str): the name of the model to load
|
| 14 |
-
Returns:
|
| 15 |
-
AutoModelForSeq2SeqLM: the model
|
| 16 |
-
AutoTokenizer: the tokenizer
|
| 17 |
"""
|
| 18 |
-
|
|
|
|
| 19 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 20 |
model_name,
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 25 |
-
model = model.to("cuda") if torch.cuda.is_available() else model
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
return model, tokenizer
|
| 29 |
|
| 30 |
|
|
@@ -76,6 +86,7 @@ def summarize_via_tokenbatches(
|
|
| 76 |
tokenizer,
|
| 77 |
batch_length=2048,
|
| 78 |
batch_stride=16,
|
|
|
|
| 79 |
**kwargs,
|
| 80 |
):
|
| 81 |
"""
|
|
@@ -83,7 +94,7 @@ def summarize_via_tokenbatches(
|
|
| 83 |
|
| 84 |
Args:
|
| 85 |
input_text (str): the text to summarize
|
| 86 |
-
model (): the model to use for
|
| 87 |
tokenizer (): the tokenizer to use for summarization
|
| 88 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
| 89 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
|
@@ -92,12 +103,16 @@ def summarize_via_tokenbatches(
|
|
| 92 |
str: the summary
|
| 93 |
"""
|
| 94 |
# log all input parameters
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
encoded_input = tokenizer(
|
| 102 |
input_text,
|
| 103 |
padding="max_length",
|
|
@@ -115,7 +130,6 @@ def summarize_via_tokenbatches(
|
|
| 115 |
pbar = tqdm(total=len(in_id_arr))
|
| 116 |
|
| 117 |
for _id, _mask in zip(in_id_arr, att_arr):
|
| 118 |
-
|
| 119 |
result, score = summarize_and_score(
|
| 120 |
ids=_id,
|
| 121 |
mask=_mask,
|
|
|
|
| 1 |
import logging
|
| 2 |
+
import pprint as pp
|
| 3 |
|
| 4 |
+
from utils import validate_pytorch2
|
| 5 |
+
|
| 6 |
+
logging.basicConfig(level=logging.INFO)
|
| 7 |
import torch
|
| 8 |
from tqdm.auto import tqdm
|
| 9 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 10 |
|
| 11 |
|
| 12 |
+
def load_model_and_tokenizer(model_name: str) -> tuple:
|
| 13 |
"""
|
| 14 |
+
load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub
|
| 15 |
+
:param str model_name: the model name/ID on the hub
|
| 16 |
+
:return tuple: a tuple containing the model and tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 21 |
model_name,
|
| 22 |
+
).to(device)
|
| 23 |
+
model = model.eval()
|
| 24 |
+
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 26 |
|
| 27 |
+
logger.info(f"Loaded model {model_name} to {device}")
|
| 28 |
+
|
| 29 |
+
if validate_pytorch2():
|
| 30 |
+
try:
|
| 31 |
+
logger.info("Compiling model with Torch 2.0")
|
| 32 |
+
model = torch.compile(model)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
logger.warning(f"Could not compile model with Torch 2.0: {e}")
|
| 35 |
+
else:
|
| 36 |
+
logger.info("Torch 2.0 not detected, skipping compilation")
|
| 37 |
+
|
| 38 |
return model, tokenizer
|
| 39 |
|
| 40 |
|
|
|
|
| 86 |
tokenizer,
|
| 87 |
batch_length=2048,
|
| 88 |
batch_stride=16,
|
| 89 |
+
min_batch_length: int = 512,
|
| 90 |
**kwargs,
|
| 91 |
):
|
| 92 |
"""
|
|
|
|
| 94 |
|
| 95 |
Args:
|
| 96 |
input_text (str): the text to summarize
|
| 97 |
+
model (): the model to use for summarization
|
| 98 |
tokenizer (): the tokenizer to use for summarization
|
| 99 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
| 100 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
|
|
|
| 103 |
str: the summary
|
| 104 |
"""
|
| 105 |
# log all input parameters
|
| 106 |
+
logger = logging.getLogger(__name__)
|
| 107 |
+
# log all input parameters
|
| 108 |
+
if batch_length < min_batch_length:
|
| 109 |
+
logger.warning(
|
| 110 |
+
f"batch_length must be at least {min_batch_length}. Setting batch_length to {min_batch_length}"
|
| 111 |
+
)
|
| 112 |
+
batch_length = min_batch_length
|
| 113 |
+
|
| 114 |
+
logger.info(f"input parameters:\n{pp.pformat(kwargs)}")
|
| 115 |
+
logger.info(f"batch_length: {batch_length}, batch_stride: {batch_stride}")
|
| 116 |
encoded_input = tokenizer(
|
| 117 |
input_text,
|
| 118 |
padding="max_length",
|
|
|
|
| 130 |
pbar = tqdm(total=len(in_id_arr))
|
| 131 |
|
| 132 |
for _id, _mask in zip(in_id_arr, att_arr):
|
|
|
|
| 133 |
result, score = summarize_and_score(
|
| 134 |
ids=_id,
|
| 135 |
mask=_mask,
|
utils.py
CHANGED
|
@@ -2,12 +2,26 @@
|
|
| 2 |
utils.py - Utility functions for the project.
|
| 3 |
"""
|
| 4 |
|
|
|
|
| 5 |
import re
|
| 6 |
from pathlib import Path
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from natsort import natsorted
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def truncate_word_count(text, max_words=512):
|
| 12 |
"""
|
| 13 |
truncate_word_count - a helper function for the gradio module
|
|
|
|
| 2 |
utils.py - Utility functions for the project.
|
| 3 |
"""
|
| 4 |
|
| 5 |
+
import logging
|
| 6 |
import re
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
+
logging.basicConfig(
|
| 10 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 11 |
+
level=logging.INFO,
|
| 12 |
+
)
|
| 13 |
+
import torch
|
| 14 |
from natsort import natsorted
|
| 15 |
|
| 16 |
|
| 17 |
+
def validate_pytorch2(torch_version: str = None):
|
| 18 |
+
torch_version = torch.__version__ if torch_version is None else torch_version
|
| 19 |
+
|
| 20 |
+
pattern = r"^2\.\d+(\.\d+)*"
|
| 21 |
+
|
| 22 |
+
return True if re.match(pattern, torch_version) else False
|
| 23 |
+
|
| 24 |
+
|
| 25 |
def truncate_word_count(text, max_words=512):
|
| 26 |
"""
|
| 27 |
truncate_word_count - a helper function for the gradio module
|