Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Peter
commited on
Commit
·
4dc1508
1
Parent(s):
a40d998
:sparkles: add file upload widget
Browse files
app.py
CHANGED
|
@@ -29,14 +29,20 @@ def proc_submission(
|
|
| 29 |
max_input_length: int = 768,
|
| 30 |
):
|
| 31 |
"""
|
| 32 |
-
proc_submission - a helper function for the gradio module
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"""
|
| 41 |
|
| 42 |
settings = {
|
|
@@ -110,6 +116,27 @@ def load_single_example_text(
|
|
| 110 |
text = clean(raw_text, lower=False)
|
| 111 |
return text
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
| 115 |
|
|
@@ -130,21 +157,21 @@ if __name__ == "__main__":
|
|
| 130 |
|
| 131 |
gr.Markdown("## Load Inputs & Select Parameters")
|
| 132 |
gr.Markdown(
|
| 133 |
-
"Enter
|
| 134 |
)
|
| 135 |
|
| 136 |
-
model_size = gr.
|
| 137 |
-
choices=["base", "large"], label="model size",
|
| 138 |
)
|
| 139 |
-
num_beams = gr.
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
)
|
| 142 |
-
token_batch_length = gr.
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
default=512,
|
| 147 |
-
step=256,
|
| 148 |
)
|
| 149 |
length_penalty = gr.inputs.Slider(
|
| 150 |
minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05
|
|
@@ -156,12 +183,14 @@ if __name__ == "__main__":
|
|
| 156 |
default=3.5,
|
| 157 |
step=0.1,
|
| 158 |
)
|
| 159 |
-
no_repeat_ngram_size = gr.
|
| 160 |
-
|
|
|
|
|
|
|
| 161 |
)
|
| 162 |
example_name = gr.Dropdown(
|
| 163 |
list(name_to_path.keys()),
|
| 164 |
-
label="
|
| 165 |
)
|
| 166 |
load_examples_button = gr.Button(
|
| 167 |
"Load Example",
|
|
@@ -171,10 +200,21 @@ if __name__ == "__main__":
|
|
| 171 |
label="input text",
|
| 172 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 173 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
with gr.Column():
|
| 176 |
gr.Markdown("## Generate Summary")
|
| 177 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 178 |
summarize_button = gr.Button("Summarize!")
|
| 179 |
|
| 180 |
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
|
|
@@ -202,6 +242,10 @@ if __name__ == "__main__":
|
|
| 202 |
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|
| 203 |
)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
summarize_button.click(
|
| 206 |
fn=proc_submission,
|
| 207 |
inputs=[
|
|
|
|
| 29 |
max_input_length: int = 768,
|
| 30 |
):
|
| 31 |
"""
|
| 32 |
+
proc_submission - a helper function for the gradio module to process submissions
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
input_text (str): the input text to summarize
|
| 36 |
+
model_size (str): the size of the model to use
|
| 37 |
+
num_beams (int): the number of beams to use
|
| 38 |
+
token_batch_length (int): the length of the token batches to use
|
| 39 |
+
length_penalty (float): the length penalty to use
|
| 40 |
+
repetition_penalty (float): the repetition penalty to use
|
| 41 |
+
no_repeat_ngram_size (int): the no repeat ngram size to use
|
| 42 |
+
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
str in HTML format, string of the summary, str of score
|
| 46 |
"""
|
| 47 |
|
| 48 |
settings = {
|
|
|
|
| 116 |
text = clean(raw_text, lower=False)
|
| 117 |
return text
|
| 118 |
|
| 119 |
+
def load_uploaded_file(file_obj):
|
| 120 |
+
"""
|
| 121 |
+
load_uploaded_file - process an uploaded file
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
file_obj (_type_): Gradio file object
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
str, the uploaded file contents
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
file_path = Path(file_obj[0].name)
|
| 131 |
+
|
| 132 |
+
try:
|
| 133 |
+
with open(file_path, "r", encoding='utf-8', errors='ignore') as f:
|
| 134 |
+
raw_text = f.read()
|
| 135 |
+
text = clean(raw_text, lower=False)
|
| 136 |
+
return text
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logging.info(f"Trying to load file with path {file_path}, error: {e}")
|
| 139 |
+
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."
|
| 140 |
|
| 141 |
if __name__ == "__main__":
|
| 142 |
|
|
|
|
| 157 |
|
| 158 |
gr.Markdown("## Load Inputs & Select Parameters")
|
| 159 |
gr.Markdown(
|
| 160 |
+
"Enter text below in the text area. The text will be summarized using the selected parameters. Optionally load an example from the list below or upload a file."
|
| 161 |
)
|
| 162 |
|
| 163 |
+
model_size = gr.Radio(
|
| 164 |
+
choices=["base", "large"], label="model size", value="large"
|
| 165 |
)
|
| 166 |
+
num_beams = gr.Radio(
|
| 167 |
+
choices=[2, 3, 4],
|
| 168 |
+
label="num beams",
|
| 169 |
+
value=2,
|
| 170 |
)
|
| 171 |
+
token_batch_length = gr.Radio(
|
| 172 |
+
choices=[512, 768, 1024],
|
| 173 |
+
label="token batch length",
|
| 174 |
+
value=512,
|
|
|
|
|
|
|
| 175 |
)
|
| 176 |
length_penalty = gr.inputs.Slider(
|
| 177 |
minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05
|
|
|
|
| 183 |
default=3.5,
|
| 184 |
step=0.1,
|
| 185 |
)
|
| 186 |
+
no_repeat_ngram_size = gr.Radio(
|
| 187 |
+
choices=[2, 3, 4],
|
| 188 |
+
label="no repeat ngram size",
|
| 189 |
+
value=3,
|
| 190 |
)
|
| 191 |
example_name = gr.Dropdown(
|
| 192 |
list(name_to_path.keys()),
|
| 193 |
+
label="Choose an Example",
|
| 194 |
)
|
| 195 |
load_examples_button = gr.Button(
|
| 196 |
"Load Example",
|
|
|
|
| 200 |
label="input text",
|
| 201 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 202 |
)
|
| 203 |
+
gr.Markdown("Upload your own file:")
|
| 204 |
+
uploaded_file = gr.File(
|
| 205 |
+
label="Upload a text file",
|
| 206 |
+
file_count=1,
|
| 207 |
+
type="file",
|
| 208 |
+
)
|
| 209 |
+
load_file_button = gr.Button(
|
| 210 |
+
"Load Uploaded File"
|
| 211 |
+
)
|
| 212 |
|
| 213 |
with gr.Column():
|
| 214 |
gr.Markdown("## Generate Summary")
|
| 215 |
+
gr.Markdown(
|
| 216 |
+
"Summary generation should take approximately 1-2 minutes for most settings."
|
| 217 |
+
)
|
| 218 |
summarize_button = gr.Button("Summarize!")
|
| 219 |
|
| 220 |
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
|
|
|
|
| 242 |
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|
| 243 |
)
|
| 244 |
|
| 245 |
+
load_file_button.click(
|
| 246 |
+
fn=load_uploaded_file, inputs=[uploaded_file], outputs=[input_text]
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
summarize_button.click(
|
| 250 |
fn=proc_submission,
|
| 251 |
inputs=[
|