Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Peter
commited on
Commit
·
c0a9b19
1
Parent(s):
b2df366
:truck: move functions
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import nltk
|
|
| 7 |
from cleantext import clean
|
| 8 |
|
| 9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
|
|
|
| 10 |
|
| 11 |
_here = Path(__file__).parent
|
| 12 |
|
|
@@ -18,27 +19,6 @@ transformers.logging.set_verbosity_error()
|
|
| 18 |
logging.basicConfig()
|
| 19 |
|
| 20 |
|
| 21 |
-
def truncate_word_count(text, max_words=512):
|
| 22 |
-
"""
|
| 23 |
-
truncate_word_count - a helper function for the gradio module
|
| 24 |
-
Parameters
|
| 25 |
-
----------
|
| 26 |
-
text : str, required, the text to be processed
|
| 27 |
-
max_words : int, optional, the maximum number of words, default=512
|
| 28 |
-
Returns
|
| 29 |
-
-------
|
| 30 |
-
dict, the text and whether it was truncated
|
| 31 |
-
"""
|
| 32 |
-
# split on whitespace with regex
|
| 33 |
-
words = re.split(r"\s+", text)
|
| 34 |
-
processed = {}
|
| 35 |
-
if len(words) > max_words:
|
| 36 |
-
processed["was_truncated"] = True
|
| 37 |
-
processed["truncated_text"] = " ".join(words[:max_words])
|
| 38 |
-
else:
|
| 39 |
-
processed["was_truncated"] = False
|
| 40 |
-
processed["truncated_text"] = text
|
| 41 |
-
return processed
|
| 42 |
|
| 43 |
|
| 44 |
def proc_submission(
|
|
@@ -117,23 +97,6 @@ def proc_submission(
|
|
| 117 |
return html
|
| 118 |
|
| 119 |
|
| 120 |
-
def load_examples(examples_dir="examples"):
|
| 121 |
-
"""
|
| 122 |
-
load_examples - a helper function for the gradio module to load examples
|
| 123 |
-
Returns:
|
| 124 |
-
list of str, the examples
|
| 125 |
-
"""
|
| 126 |
-
src = _here / examples_dir
|
| 127 |
-
src.mkdir(exist_ok=True)
|
| 128 |
-
examples = [f for f in src.glob("*.txt")]
|
| 129 |
-
# load the examples into a list
|
| 130 |
-
text_examples = []
|
| 131 |
-
for example in examples:
|
| 132 |
-
with open(example, "r") as f:
|
| 133 |
-
text = f.read()
|
| 134 |
-
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
|
| 135 |
-
|
| 136 |
-
return text_examples
|
| 137 |
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
|
@@ -183,6 +146,6 @@ if __name__ == "__main__":
|
|
| 183 |
title=title,
|
| 184 |
description=description,
|
| 185 |
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
|
| 186 |
-
examples=load_examples(),
|
| 187 |
cache_examples=True,
|
| 188 |
).launch()
|
|
|
|
| 7 |
from cleantext import clean
|
| 8 |
|
| 9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
| 10 |
+
from utils import load_examples, truncate_word_count
|
| 11 |
|
| 12 |
_here = Path(__file__).parent
|
| 13 |
|
|
|
|
| 19 |
logging.basicConfig()
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
def proc_submission(
|
|
|
|
| 97 |
return html
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
|
|
|
| 146 |
title=title,
|
| 147 |
description=description,
|
| 148 |
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
|
| 149 |
+
examples=load_examples(_here / "examples"),
|
| 150 |
cache_examples=True,
|
| 151 |
).launch()
|
utils.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
utils.py - Utility functions for the project.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def truncate_word_count(text, max_words=512):
|
| 11 |
+
"""
|
| 12 |
+
truncate_word_count - a helper function for the gradio module
|
| 13 |
+
Parameters
|
| 14 |
+
----------
|
| 15 |
+
text : str, required, the text to be processed
|
| 16 |
+
max_words : int, optional, the maximum number of words, default=512
|
| 17 |
+
Returns
|
| 18 |
+
-------
|
| 19 |
+
dict, the text and whether it was truncated
|
| 20 |
+
"""
|
| 21 |
+
# split on whitespace with regex
|
| 22 |
+
words = re.split(r"\s+", text)
|
| 23 |
+
processed = {}
|
| 24 |
+
if len(words) > max_words:
|
| 25 |
+
processed["was_truncated"] = True
|
| 26 |
+
processed["truncated_text"] = " ".join(words[:max_words])
|
| 27 |
+
else:
|
| 28 |
+
processed["was_truncated"] = False
|
| 29 |
+
processed["truncated_text"] = text
|
| 30 |
+
return processed
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_examples(src):
|
| 34 |
+
"""
|
| 35 |
+
load_examples - a helper function for the gradio module to load examples
|
| 36 |
+
Returns:
|
| 37 |
+
list of str, the examples
|
| 38 |
+
"""
|
| 39 |
+
src = Path(src)
|
| 40 |
+
src.mkdir(exist_ok=True)
|
| 41 |
+
examples = [f for f in src.glob("*.txt")]
|
| 42 |
+
# load the examples into a list
|
| 43 |
+
text_examples = []
|
| 44 |
+
for example in examples:
|
| 45 |
+
with open(example, "r") as f:
|
| 46 |
+
text = f.read()
|
| 47 |
+
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
|
| 48 |
+
|
| 49 |
+
return text_examples
|