Spaces:
Running
Running
| # File: prompts.py | |
| DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format. | |
| Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection. | |
| make sure the Pages follow a logical flow and each prompt's content does not overlap with other pages. | |
| OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags | |
| <output> | |
| { | |
| "Document": { | |
| "Title": "Document Title", | |
| "Author": "Author Name", | |
| "Date": "YYYY-MM-DD", | |
| "Version": "1.0", | |
| "Pages": [ | |
| { | |
| "PageNumber": "1", | |
| "Title": "Section Title", | |
| "Content": "overview", # Optional: Short overview of the Section, if not required leave it as "" empty string | |
| "Subsections": [ | |
| { | |
| "PageNumber": "1.1", | |
| "Title": "Subsection Title", | |
| "Content": "Specific prompt or instruction for generating content for this subsection" | |
| } | |
| ] | |
| } | |
| ] | |
| } | |
| } | |
| </output>""" | |
| DOCUMENT_OUTLINE_PROMPT_USER = """Generate a document outline {num_pages}for the following query: <prompt>{query}</prompt>""" | |
| DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, replace the section/subsection prompts with the requested content. | |
| OUTPUT AS A WELL FORMATED DOCUMENT ENCLOSED IN <response></response> tags | |
| <overall_objective>{overall_objective}</overall_objective> | |
| <document_layout>{document_layout}</document_layout>""" | |
| DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content requested formatted as markdown. Follow the instructions below title/subtitle to replace it with appropriate content: {content_instruction}</prompt>""" | |
| ########################################## | |
| DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM = """You are a document template generator. Provide the outline of the document requested in <prompt></prompt> in JSON format. | |
| Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating template with placeholder text /example content for that particular section or subsection. Specify in each prompt to output as a template and use placeholder text/ tables as necessory. | |
| make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections. | |
| OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags | |
| <output> | |
| { | |
| "Document": { | |
| "Title": "Document Title", | |
| "Author": "Author Name", | |
| "Date": "YYYY-MM-DD", | |
| "Version": "1.0", | |
| "Pages": [ | |
| { | |
| "PageNumber": "1", | |
| "Title": "Section Title", | |
| "Content": "Specific prompt or instruction for generating template for this section", | |
| "Subsections": [ | |
| { | |
| "PageNumber": "1.1", | |
| "Title": "Subsection Title", | |
| "Content": "Specific prompt or instruction for generating template for this subsection" | |
| } | |
| ] | |
| } | |
| ] | |
| } | |
| } | |
| </output>""" | |
| DOCUMENT_TEMPLATE_PROMPT_USER = """Generate a document template outline {num_pages} for the following query:<prompt>{query}</prompt>""" | |
| DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM = """You are a document template generator, replace the section/subsection prompts with the requested content, Use placeholder text/examples/tables wherever required. | |
| FORMAT YOUR OUTPUT AS A TEMPLATE ENCLOSED IN <response></response> tags | |
| <overall_objective>{overall_objective}</overall_objective> | |
| <document_layout>{document_layout}</document_layout>""" | |
| DOCUMENT_TEMPLATE_SECTION_PROMPT_USER = """<prompt>Output the content requested formatted as markdown. Follow the instructions below title/subtitle to replace it with appropriate content: {content_instruction}</prompt>""" | |
| # File: llm_observability.py | |
| import sqlite3 | |
| import json | |
| from datetime import datetime | |
| from typing import Dict, Any, List, Optional | |
| class LLMObservabilityManager: | |
| def __init__(self, db_path: str = "llm_observability_v2.db"): | |
| self.db_path = db_path | |
| self.create_table() | |
| def create_table(self): | |
| with sqlite3.connect(self.db_path) as conn: | |
| cursor = conn.cursor() | |
| cursor.execute(''' | |
| CREATE TABLE IF NOT EXISTS llm_observations ( | |
| id TEXT PRIMARY KEY, | |
| conversation_id TEXT, | |
| created_at DATETIME, | |
| status TEXT, | |
| request TEXT, | |
| response TEXT, | |
| model TEXT, | |
| total_tokens INTEGER, | |
| prompt_tokens INTEGER, | |
| completion_tokens INTEGER, | |
| latency FLOAT, | |
| user TEXT | |
| ) | |
| ''') | |
| def insert_observation(self, response: Dict[str, Any], conversation_id: str, status: str, request: str, latency: float, user: str): | |
| created_at = datetime.fromtimestamp(response['created']) | |
| with sqlite3.connect(self.db_path) as conn: | |
| cursor = conn.cursor() | |
| cursor.execute(''' | |
| INSERT INTO llm_observations | |
| (id, conversation_id, created_at, status, request, response, model, total_tokens, prompt_tokens, completion_tokens, latency, user) | |
| VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) | |
| ''', ( | |
| response['id'], | |
| conversation_id, | |
| created_at, | |
| status, | |
| request, | |
| json.dumps(response['choices'][0]['message']), | |
| response['model'], | |
| response['usage']['total_tokens'], | |
| response['usage']['prompt_tokens'], | |
| response['usage']['completion_tokens'], | |
| latency, | |
| user | |
| )) | |
| def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]: | |
| with sqlite3.connect(self.db_path) as conn: | |
| cursor = conn.cursor() | |
| if conversation_id: | |
| cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,)) | |
| else: | |
| cursor.execute('SELECT * FROM llm_observations ORDER BY created_at') | |
| rows = cursor.fetchall() | |
| column_names = [description[0] for description in cursor.description] | |
| return [dict(zip(column_names, row)) for row in rows] | |
| def get_all_observations(self) -> List[Dict[str, Any]]: | |
| return self.get_observations() | |
| # File: app.py | |
| import os | |
| import json | |
| import re | |
| import asyncio | |
| import time | |
| from typing import List, Dict, Optional, Any, Callable, Union | |
| from openai import OpenAI | |
| import logging | |
| import functools | |
| from fastapi import APIRouter, HTTPException, Request, UploadFile, File, Depends | |
| from fastapi.responses import StreamingResponse | |
| from pydantic import BaseModel | |
| from fastapi_cache import FastAPICache | |
| from fastapi_cache.decorator import cache | |
| import psycopg2 | |
| from datetime import datetime | |
| import base64 | |
| from fastapi import Form | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| def log_execution(func: Callable) -> Callable: | |
| def wrapper(*args: Any, **kwargs: Any) -> Any: | |
| logger.info(f"Executing {func.__name__}") | |
| try: | |
| result = func(*args, **kwargs) | |
| logger.info(f"{func.__name__} completed successfully") | |
| return result | |
| except Exception as e: | |
| logger.error(f"Error in {func.__name__}: {e}") | |
| raise | |
| return wrapper | |
| # aiclient.py | |
| class AIClient: | |
| def __init__(self): | |
| self.client = OpenAI( | |
| base_url="https://openrouter.ai/api/v1", | |
| api_key="sk-or-v1-" + os.environ['OPENROUTER_API_KEY'] | |
| ) | |
| self.observability_manager = LLMObservabilityManager() | |
| def generate_response( | |
| self, | |
| messages: List[Dict[str, str]], | |
| model: str = "openai/gpt-4o-mini", | |
| max_tokens: int = 32000, | |
| conversation_id: str = None, | |
| user: str = "anonymous" | |
| ) -> Optional[str]: | |
| if not messages: | |
| return None | |
| start_time = time.time() | |
| response = self.client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| max_tokens=max_tokens, | |
| stream=False | |
| ) | |
| end_time = time.time() | |
| latency = end_time - start_time | |
| # Log the observation | |
| self.observability_manager.insert_observation( | |
| response=response.dict(), | |
| conversation_id=conversation_id or "default", | |
| status="success", | |
| request=json.dumps(messages), | |
| latency=latency, | |
| user=user | |
| ) | |
| return response.choices[0].message.content | |
| def generate_vision_response( | |
| self, | |
| messages: List[Dict[str, Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]]], | |
| model: str = "google/gemini-flash-1.5-8b", | |
| max_tokens: int = 32000, | |
| conversation_id: str = None, | |
| user: str = "anonymous" | |
| ) -> Optional[str]: | |
| if not messages: | |
| return None | |
| start_time = time.time() | |
| response = self.client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| max_tokens=max_tokens, | |
| stream=False | |
| ) | |
| end_time = time.time() | |
| latency = end_time - start_time | |
| # Log the observation | |
| self.observability_manager.insert_observation( | |
| response=response.dict(), | |
| conversation_id=conversation_id or "default", | |
| status="success", | |
| request=json.dumps(messages), | |
| latency=latency, | |
| user=user | |
| ) | |
| return response.choices[0].message.content | |
| class VisionTools: | |
| def __init__(self, ai_client): | |
| self.ai_client = ai_client | |
| async def extract_images_info(self, images: List[UploadFile]) -> str: | |
| try: | |
| image_contents = [] | |
| for image in images: | |
| image_content = await image.read() | |
| base64_image = base64.b64encode(image_content).decode('utf-8') | |
| image_contents.append({ | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"data:image/jpeg;base64,{base64_image}" | |
| } | |
| }) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": "Extract the contents of these images in detail in a structured format, focusing on any text, tables, diagrams, or visual elements that might be relevant for document generation." | |
| }, | |
| *image_contents | |
| ] | |
| } | |
| ] | |
| image_context = self.ai_client.generate_vision_response(messages) | |
| return image_context | |
| except Exception as e: | |
| print(f"Error processing images: {str(e)}") | |
| return "" | |
| class DatabaseManager: | |
| """Manages database operations.""" | |
| def __init__(self): | |
| self.db_params = { | |
| "dbname": "postgres", | |
| "user": os.environ['SUPABASE_USER'], | |
| "password": os.environ['SUPABASE_PASSWORD'], | |
| "host": "aws-0-us-west-1.pooler.supabase.com", | |
| "port": "5432" | |
| } | |
| def update_database(self, user_id: str, user_query: str, response: str) -> None: | |
| with psycopg2.connect(**self.db_params) as conn: | |
| with conn.cursor() as cur: | |
| insert_query = """ | |
| INSERT INTO ai_document_generator (user_id, user_query, response) | |
| VALUES (%s, %s, %s); | |
| """ | |
| cur.execute(insert_query, (user_id, user_query, response)) | |
| class DocumentGenerator: | |
| def __init__(self, ai_client: AIClient): | |
| self.ai_client = ai_client | |
| self.document_outline = None | |
| self.content_messages = [] | |
| def extract_between_tags(text: str, tag: str) -> str: | |
| pattern = f"<{tag}>(.*?)</{tag}>" | |
| match = re.search(pattern, text, re.DOTALL) | |
| return match.group(1).strip() if match else "" | |
| def remove_duplicate_title(content: str, title: str, section_number: str) -> str: | |
| patterns = [ | |
| rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}", | |
| rf"^#+\s*{re.escape(title)}", | |
| rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}", | |
| rf"^{re.escape(title)}", | |
| ] | |
| for pattern in patterns: | |
| content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE) | |
| return content.lstrip() | |
| def generate_document_outline(self, query: str, num_pages:int, template: bool = False, image_context: str = "", max_retries: int = 3) -> Optional[Dict]: | |
| pages_prompt = "" if num_pages == 0 else f"consisting of {num_pages} pages " | |
| messages = [ | |
| {"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM}, | |
| {"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query, num_pages=pages_prompt) if not template else DOCUMENT_TEMPLATE_PROMPT_USER.format(query=query, num_pages=pages_prompt)} | |
| ] | |
| # Update user content to include image context if provided | |
| if image_context: | |
| messages[1]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>" | |
| for attempt in range(max_retries): | |
| outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o") | |
| outline_json_text = self.extract_between_tags(outline_response, "output") | |
| try: | |
| self.document_outline = json.loads(outline_json_text) | |
| return self.document_outline | |
| except json.JSONDecodeError as e: | |
| if attempt < max_retries - 1: | |
| logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}") | |
| logger.info("Retrying...") | |
| else: | |
| logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}") | |
| return None | |
| def generate_content(self, title: str, content_instruction: str, section_number: str, template: bool = False) -> str: | |
| SECTION_PROMPT_USER = DOCUMENT_SECTION_PROMPT_USER if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_USER | |
| self.content_messages.append({ | |
| "role": "user", | |
| "content": SECTION_PROMPT_USER.format( | |
| #section_or_subsection_title=title, | |
| content_instruction=content_instruction | |
| ) | |
| }) | |
| section_response = self.ai_client.generate_response(self.content_messages) | |
| content = self.extract_between_tags(section_response, "response") | |
| content = self.remove_duplicate_title(content, title, section_number) | |
| self.content_messages.append({ | |
| "role": "assistant", | |
| "content": section_response | |
| }) | |
| return content | |
| class MarkdownConverter: | |
| def slugify(text: str) -> str: | |
| return re.sub(r'\W+', '-', text.lower()) | |
| def convert_to_markdown(cls, document: Dict) -> str: | |
| markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n" | |
| markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n" | |
| markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n" | |
| markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n" | |
| markdown += "</div>\n\n" | |
| # Generate Table of Contents | |
| markdown += "<div style='page-break-before: always;'></div>\n\n" | |
| markdown += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n" | |
| markdown += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n" | |
| for section in document['Pages']: | |
| section_number = section['PageNumber'] | |
| section_title = section['Title'] | |
| markdown += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n" | |
| for subsection in section.get('Subsections', []): | |
| subsection_number = subsection['PageNumber'] | |
| subsection_title = subsection['Title'] | |
| markdown += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n" | |
| markdown += "</nav>\n\n" | |
| # Generate Content | |
| markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n" | |
| for section in document['Pages']: | |
| markdown += "<div style='page-break-before: always;'></div>\n\n" | |
| section_number = section['PageNumber'] | |
| section_title = section['Title'] | |
| markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n" | |
| markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n" | |
| markdown += "</div>" | |
| return markdown | |
| router = APIRouter() | |
| class JsonDocumentResponse(BaseModel): | |
| json_document: Dict | |
| # class JsonDocumentRequest(BaseModel): | |
| # query: str | |
| # template: bool = False | |
| # images: Optional[List[UploadFile]] = File(None) | |
| # documents: Optional[List[UploadFile]] = File(None) | |
| # conversation_id: str = "" | |
| class MarkdownDocumentRequest(BaseModel): | |
| json_document: Dict | |
| query: str | |
| template: bool = False | |
| conversation_id: str = "" | |
| MESSAGE_DELIMITER = b"\n---DELIMITER---\n" | |
| def yield_message(message): | |
| message_json = json.dumps(message, ensure_ascii=False).encode('utf-8') | |
| return message_json + MESSAGE_DELIMITER | |
| async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str, template: bool = False, conversation_id: str = ""): | |
| document_generator.document_outline = document_outline | |
| db_manager = DatabaseManager() | |
| overall_objective = query | |
| document_layout = json.dumps(document_generator.document_outline["Document"]["Pages"], indent=2) | |
| cache_key = f"image_context_{conversation_id}" | |
| image_context = await FastAPICache.get_backend().get(cache_key) | |
| SECTION_PROMPT_SYSTEM = DOCUMENT_SECTION_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM | |
| document_generator.content_messages = [ | |
| { | |
| "role": "system", | |
| "content": SECTION_PROMPT_SYSTEM.format( | |
| overall_objective=overall_objective, | |
| document_layout=document_layout | |
| ) | |
| } | |
| ] | |
| if image_context: | |
| document_generator.content_messages[0]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>" | |
| for section in document_generator.document_outline["Document"].get("Pages", []): | |
| section_title = section.get("Title", "") | |
| section_number = section.get("PageNumber", "") | |
| content_instruction = section.get("Content", "") | |
| section_prompt_content = f"""# {section_number} {section_title}\n\n{content_instruction}\n\n""" | |
| for subsection in section.get("Subsections", []): | |
| subsection_title = subsection.get("Title", "") | |
| subsection_number = subsection.get("PageNumber", "") | |
| subsection_content_instruction = subsection.get("Content", "") | |
| section_prompt_content += f"""## {subsection_number} {subsection_title}\n\n{subsection_content_instruction}\n\n""" | |
| content = document_generator.generate_content(section_title, section_prompt_content, section_number, template) | |
| section["Content"] = content | |
| yield yield_message({ | |
| "type": "document_section", | |
| "content": { | |
| "section_number": section_number, | |
| "section_title": section_title, | |
| "content": content | |
| } | |
| }) | |
| markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"]) | |
| yield yield_message({ | |
| "type": "complete_document", | |
| "content": { | |
| "markdown": markdown_document, | |
| "json": document_generator.document_outline | |
| }, | |
| }); | |
| db_manager.update_database("elevatics", query, markdown_document) | |
| async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest): | |
| ai_client = AIClient() | |
| document_generator = DocumentGenerator(ai_client) | |
| async def stream_generator(): | |
| try: | |
| async for chunk in generate_document_stream(document_generator, request.json_document, request.query, request.template, request.conversation_id): | |
| yield chunk | |
| except Exception as e: | |
| yield yield_message({ | |
| "type": "error", | |
| "content": str(e) | |
| }) | |
| return StreamingResponse(stream_generator(), media_type="application/octet-stream") | |
| async def generate_document_outline_endpoint( | |
| query: str = Form(...), | |
| template: bool = Form(False), | |
| conversation_id: str = Form(...), | |
| num_pages:int = Form(...), | |
| images: Optional[List[UploadFile]] = File(None), | |
| documents: Optional[List[UploadFile]] = File(None) | |
| ): | |
| ai_client = AIClient() | |
| document_generator = DocumentGenerator(ai_client) | |
| vision_tools = VisionTools(ai_client) | |
| try: | |
| image_context = "" | |
| if images: | |
| image_context = await vision_tools.extract_images_info(images) | |
| # Store the image_context in the cache | |
| cache_key = f"image_context_{conversation_id}" | |
| await FastAPICache.get_backend().set(cache_key, image_context, expire=3600) # Cache for 1 hour | |
| json_document = document_generator.generate_document_outline( | |
| query, | |
| num_pages, | |
| template, | |
| image_context=image_context | |
| ) | |
| if json_document is None: | |
| raise HTTPException(status_code=500, detail="Failed to generate a valid document outline") | |
| return JsonDocumentResponse(json_document=json_document) | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| ## OBSERVABILITY | |
| from uuid import uuid4 | |
| import csv | |
| from io import StringIO | |
| class ObservationResponse(BaseModel): | |
| observations: List[Dict] | |
| def create_csv_response(observations: List[Dict]) -> StreamingResponse: | |
| def iter_csv(data): | |
| output = StringIO() | |
| writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else []) | |
| writer.writeheader() | |
| for row in data: | |
| writer.writerow(row) | |
| output.seek(0) | |
| yield output.read() | |
| headers = { | |
| 'Content-Disposition': 'attachment; filename="observations.csv"' | |
| } | |
| return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers) | |
| async def get_last_observations(limit: int = 10, format: str = "json"): | |
| observability_manager = LLMObservabilityManager() | |
| try: | |
| # Get all observations, sorted by created_at in descending order | |
| all_observations = observability_manager.get_observations() | |
| all_observations.sort(key=lambda x: x['created_at'], reverse=True) | |
| # Get the last conversation_id | |
| if all_observations: | |
| last_conversation_id = all_observations[0]['conversation_id'] | |
| # Filter observations for the last conversation | |
| last_conversation_observations = [ | |
| obs for obs in all_observations | |
| if obs['conversation_id'] == last_conversation_id | |
| ][:limit] | |
| if format.lower() == "csv": | |
| return create_csv_response(last_conversation_observations) | |
| else: | |
| return ObservationResponse(observations=last_conversation_observations) | |
| else: | |
| if format.lower() == "csv": | |
| return create_csv_response([]) | |
| else: | |
| return ObservationResponse(observations=[]) | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}") | |
| ## TEST CACHE | |
| class CacheItem(BaseModel): | |
| key: str | |
| value: str | |
| async def set_cache(item: CacheItem): | |
| try: | |
| # Set the cache with a default expiration of 1 hour (3600 seconds) | |
| await FastAPICache.get_backend().set(item.key, item.value, expire=3600) | |
| return {"message": f"Cache set for key: {item.key}"} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Failed to set cache: {str(e)}") | |
| async def get_cache(key: str): | |
| try: | |
| value = await FastAPICache.get_backend().get(key) | |
| if value is None: | |
| raise HTTPException(status_code=404, detail=f"No cache found for key: {key}") | |
| return {"key": key, "value": value} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Failed to get cache: {str(e)}") | |