Spaces:
Running
Running
Update helper_functions_api.py
Browse files- helper_functions_api.py +36 -111
helper_functions_api.py
CHANGED
|
@@ -70,20 +70,19 @@ from together import Together
|
|
| 70 |
llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
|
| 71 |
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"
|
| 72 |
|
| 73 |
-
|
| 74 |
-
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments."
|
| 75 |
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
|
| 76 |
|
| 77 |
import tiktoken # Used to limit tokens
|
| 78 |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
|
| 79 |
|
| 80 |
-
def limit_tokens(input_string, token_limit=
|
| 81 |
"""
|
| 82 |
Limit tokens sent to the model
|
| 83 |
"""
|
| 84 |
return encoding.decode(encoding.encode(input_string)[:token_limit])
|
| 85 |
|
| 86 |
-
def together_response(message, model = "meta-llama/Llama-3-8b-chat-hf", SysPrompt = SysPromptDefault, temperature=0.2):
|
| 87 |
client = OpenAI(
|
| 88 |
api_key=TOGETHER_API_KEY,
|
| 89 |
base_url="https://together.hconeai.com/v1",
|
|
@@ -95,6 +94,7 @@ def together_response(message, model = "meta-llama/Llama-3-8b-chat-hf", SysPromp
|
|
| 95 |
model=model,
|
| 96 |
messages=messages,
|
| 97 |
temperature=temperature,
|
|
|
|
| 98 |
)
|
| 99 |
return response.choices[0].message.content
|
| 100 |
|
|
@@ -122,11 +122,27 @@ def remove_stopwords(text):
|
|
| 122 |
filtered_text = [word for word in words if word.lower() not in stop_words]
|
| 123 |
return ' '.join(filtered_text)
|
| 124 |
|
| 125 |
-
def rephrase_content(content, query):
|
| 126 |
-
return together_response(f"You are an information retriever and summarizer,ignore everything you know, return only the\
|
| 127 |
-
factual information regarding the query: {{{query}}} into a maximum of {500} words. Output should be concise chunks of \
|
| 128 |
-
paragraphs or tables or both, ignore links, using the scraped context:{{{content}}}")
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
class Scraper:
|
| 131 |
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"):
|
| 132 |
self.session = requests.Session()
|
|
@@ -151,23 +167,31 @@ def extract_main_content(html):
|
|
| 151 |
return plain_text
|
| 152 |
return ""
|
| 153 |
|
| 154 |
-
def process_content(url, query):
|
| 155 |
scraper = Scraper()
|
| 156 |
html_content = scraper.fetch_content(url)
|
| 157 |
if html_content:
|
| 158 |
content = extract_main_content(html_content)
|
| 159 |
if content:
|
| 160 |
-
rephrased_content = rephrase_content(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
return rephrased_content, url
|
| 162 |
return "", url
|
| 163 |
|
| 164 |
-
def fetch_and_extract_content(urls, query):
|
| 165 |
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
|
| 166 |
-
future_to_url = {
|
|
|
|
|
|
|
|
|
|
| 167 |
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
|
| 168 |
|
| 169 |
return all_text_with_urls
|
| 170 |
|
|
|
|
| 171 |
def search_brave(query, num_results=5):
|
| 172 |
|
| 173 |
brave = Brave(BRAVE_API_KEY)
|
|
@@ -176,103 +200,4 @@ def search_brave(query, num_results=5):
|
|
| 176 |
|
| 177 |
return [url.__str__() for url in search_results.urls]
|
| 178 |
|
| 179 |
-
def generate_report_with_reference(full_data):
|
| 180 |
-
"""
|
| 181 |
-
Generate HTML report with references and saves pdf report to "generated_pdf_report.pdf"
|
| 182 |
-
"""
|
| 183 |
-
pdf = FPDF()
|
| 184 |
-
with open("report_with_references_template.html") as f: # src/research-pro/app_v1.5_online/
|
| 185 |
-
html_template = f.read()
|
| 186 |
-
|
| 187 |
-
# Loop through each row in your dataset
|
| 188 |
-
html_report = ''
|
| 189 |
-
idx = 1
|
| 190 |
-
for subtopic_data in full_data:
|
| 191 |
-
|
| 192 |
-
md_report = md_to_html(subtopic_data['md_report'])
|
| 193 |
-
# Convert the string representation of a list of tuples back to a list of tuples
|
| 194 |
-
references = ast.literal_eval(subtopic_data['text_with_urls'])
|
| 195 |
-
|
| 196 |
-
collapsible_blocks = []
|
| 197 |
-
for ref_idx, reference in enumerate(references):
|
| 198 |
-
ref_text = md_to_html(reference[0])
|
| 199 |
-
ref_url = reference[1]
|
| 200 |
-
urls_html = ''.join(f'<a href="{ref_url}"> {ref_url}</a>')
|
| 201 |
-
|
| 202 |
-
collapsible_block = '''
|
| 203 |
-
<details>
|
| 204 |
-
<summary>Reference {}: {}</summary>
|
| 205 |
-
<div>
|
| 206 |
-
<p>{}</p>
|
| 207 |
-
<ul>{}</ul>
|
| 208 |
-
</div>
|
| 209 |
-
</details>
|
| 210 |
-
'''.format(ref_idx+1, urls_html, ref_text, urls_html)
|
| 211 |
-
|
| 212 |
-
collapsible_blocks.append(collapsible_block)
|
| 213 |
-
|
| 214 |
-
references_html = '\n'.join(collapsible_blocks)
|
| 215 |
-
|
| 216 |
-
template = Template(html_template)
|
| 217 |
-
html_page = template.render(md_report=md_report, references=references_html)
|
| 218 |
-
|
| 219 |
-
pdf.add_page()
|
| 220 |
-
pdf_report = f"<h1><strong>Report {idx}</strong></h1>"+md_report+f"<h1><strong>References for Report {idx}</strong></h1>"+references_html
|
| 221 |
-
|
| 222 |
-
pdf.write_html(pdf_report.encode('ascii', 'ignore').decode('ascii')) # Filter non-asci characters
|
| 223 |
-
html_report += html_page
|
| 224 |
-
idx+=1
|
| 225 |
-
|
| 226 |
-
pdf.output("generated_pdf_report.pdf")
|
| 227 |
-
return html_report
|
| 228 |
-
|
| 229 |
-
def write_dataframes_to_excel(dataframes_list, filename):
|
| 230 |
-
"""
|
| 231 |
-
input: [df_list1, df_list2, ..]
|
| 232 |
-
saves filename.xlsx
|
| 233 |
-
"""
|
| 234 |
-
try:
|
| 235 |
-
with pd.ExcelWriter(filename, engine="openpyxl") as writer:
|
| 236 |
-
for idx, dataframes in enumerate(dataframes_list):
|
| 237 |
-
startrow = 0
|
| 238 |
-
for idx2, df in enumerate(dataframes):
|
| 239 |
-
df.to_excel(writer, sheet_name=f"Sheet{idx+1}", startrow=startrow, index=False)
|
| 240 |
-
startrow += len(df) + 2
|
| 241 |
-
except:
|
| 242 |
-
# Empty dataframe due to no tables found, file is not written
|
| 243 |
-
pass
|
| 244 |
-
|
| 245 |
-
def extract_tables_from_html(html_file):
|
| 246 |
-
"""
|
| 247 |
-
input: html_file
|
| 248 |
-
output: [df1,df2,df3,..]
|
| 249 |
-
"""
|
| 250 |
-
# Initialize an empty list to store the dataframes
|
| 251 |
-
dataframes = []
|
| 252 |
-
|
| 253 |
-
# Open the HTML file and parse it with BeautifulSoup
|
| 254 |
-
soup = BeautifulSoup(html_file, 'html.parser')
|
| 255 |
-
|
| 256 |
-
# Find all the tables in the HTML file
|
| 257 |
-
tables = soup.find_all('table')
|
| 258 |
-
|
| 259 |
-
# Iterate through each table
|
| 260 |
-
for table in tables:
|
| 261 |
-
# Extract the table headers
|
| 262 |
-
headers = [th.text for th in table.find_all('th')]
|
| 263 |
-
|
| 264 |
-
# Extract the table data
|
| 265 |
-
rows = table.find_all('tr')
|
| 266 |
-
data = []
|
| 267 |
-
for row in rows:
|
| 268 |
-
row_data = [td.text for td in row.find_all('td')]
|
| 269 |
-
data.append(row_data)
|
| 270 |
-
|
| 271 |
-
# Create a dataframe from the headers and data
|
| 272 |
-
df = pd.DataFrame(data, columns=headers)
|
| 273 |
-
|
| 274 |
-
# Append the dataframe to the list of dataframes
|
| 275 |
-
dataframes.append(df)
|
| 276 |
|
| 277 |
-
# Return the list of dataframes
|
| 278 |
-
return dataframes
|
|
|
|
| 70 |
llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
|
| 71 |
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"
|
| 72 |
|
| 73 |
+
SysPromptData = "You are an information retriever and summarizer, return only the factual information regarding the user query"
|
|
|
|
| 74 |
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
|
| 75 |
|
| 76 |
import tiktoken # Used to limit tokens
|
| 77 |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
|
| 78 |
|
| 79 |
+
def limit_tokens(input_string, token_limit=7500):
|
| 80 |
"""
|
| 81 |
Limit tokens sent to the model
|
| 82 |
"""
|
| 83 |
return encoding.decode(encoding.encode(input_string)[:token_limit])
|
| 84 |
|
| 85 |
+
def together_response(message, model = "meta-llama/Llama-3-8b-chat-hf", SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000):
|
| 86 |
client = OpenAI(
|
| 87 |
api_key=TOGETHER_API_KEY,
|
| 88 |
base_url="https://together.hconeai.com/v1",
|
|
|
|
| 94 |
model=model,
|
| 95 |
messages=messages,
|
| 96 |
temperature=temperature,
|
| 97 |
+
frequency_penalty = frequency_penalty
|
| 98 |
)
|
| 99 |
return response.choices[0].message.content
|
| 100 |
|
|
|
|
| 122 |
filtered_text = [word for word in words if word.lower() not in stop_words]
|
| 123 |
return ' '.join(filtered_text)
|
| 124 |
|
| 125 |
+
def rephrase_content(data_format, content, query):
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
if data_format == "Structured data":
|
| 128 |
+
return together_response(
|
| 129 |
+
f"return only the factual information regarding the query: {{{query}}}. Output should be concise chunks of \
|
| 130 |
+
paragraphs or tables or both, using the scraped context:{{{limit_tokens(content)}}}",
|
| 131 |
+
SysPrompt=SysPromptData,
|
| 132 |
+
max_tokens=500,
|
| 133 |
+
)
|
| 134 |
+
elif data_format == "Quantitative data":
|
| 135 |
+
return together_response(
|
| 136 |
+
f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
|
| 137 |
+
SysPrompt=SysPromptData,
|
| 138 |
+
max_tokens=500,
|
| 139 |
+
)
|
| 140 |
+
else:
|
| 141 |
+
return together_response(
|
| 142 |
+
f"return only the factual information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
|
| 143 |
+
SysPrompt=SysPromptData,
|
| 144 |
+
max_tokens=500,
|
| 145 |
+
)
|
| 146 |
class Scraper:
|
| 147 |
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"):
|
| 148 |
self.session = requests.Session()
|
|
|
|
| 167 |
return plain_text
|
| 168 |
return ""
|
| 169 |
|
| 170 |
+
def process_content(data_format, url, query):
|
| 171 |
scraper = Scraper()
|
| 172 |
html_content = scraper.fetch_content(url)
|
| 173 |
if html_content:
|
| 174 |
content = extract_main_content(html_content)
|
| 175 |
if content:
|
| 176 |
+
rephrased_content = rephrase_content(
|
| 177 |
+
data_format=data_format,
|
| 178 |
+
content=limit_tokens(remove_stopwords(content), token_limit=1000),
|
| 179 |
+
query=query,
|
| 180 |
+
)
|
| 181 |
return rephrased_content, url
|
| 182 |
return "", url
|
| 183 |
|
| 184 |
+
def fetch_and_extract_content(data_format, urls, query):
|
| 185 |
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
|
| 186 |
+
future_to_url = {
|
| 187 |
+
executor.submit(process_content, data_format, url, query): url
|
| 188 |
+
for url in urls
|
| 189 |
+
}
|
| 190 |
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
|
| 191 |
|
| 192 |
return all_text_with_urls
|
| 193 |
|
| 194 |
+
|
| 195 |
def search_brave(query, num_results=5):
|
| 196 |
|
| 197 |
brave = Brave(BRAVE_API_KEY)
|
|
|
|
| 200 |
|
| 201 |
return [url.__str__() for url in search_results.urls]
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
|
|
|
|
|