Spaces:
Running
Running
Update document_generator.py
Browse files- document_generator.py +33 -29
document_generator.py
CHANGED
|
@@ -40,7 +40,7 @@ FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags
|
|
| 40 |
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
| 41 |
|
| 42 |
# File: app.py
|
| 43 |
-
import os
|
| 44 |
import json
|
| 45 |
import re
|
| 46 |
import time
|
|
@@ -52,16 +52,17 @@ import functools
|
|
| 52 |
from fastapi import APIRouter, HTTPException
|
| 53 |
from pydantic import BaseModel
|
| 54 |
from fastapi_cache.decorator import cache
|
|
|
|
| 55 |
|
| 56 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 57 |
logger = logging.getLogger(__name__)
|
| 58 |
|
| 59 |
def log_execution(func: Callable) -> Callable:
|
| 60 |
@functools.wraps(func)
|
| 61 |
-
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
| 62 |
logger.info(f"Executing {func.__name__}")
|
| 63 |
try:
|
| 64 |
-
result = func(*args, **kwargs)
|
| 65 |
logger.info(f"{func.__name__} completed successfully")
|
| 66 |
return result
|
| 67 |
except Exception as e:
|
|
@@ -77,7 +78,7 @@ class AIClient:
|
|
| 77 |
)
|
| 78 |
|
| 79 |
@log_execution
|
| 80 |
-
def generate_response(
|
| 81 |
self,
|
| 82 |
messages: List[Dict[str, str]],
|
| 83 |
model: str = "openai/gpt-4o-mini",
|
|
@@ -85,12 +86,14 @@ class AIClient:
|
|
| 85 |
) -> Optional[str]:
|
| 86 |
if not messages:
|
| 87 |
return None
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
model=model,
|
| 90 |
messages=messages,
|
| 91 |
max_tokens=max_tokens,
|
| 92 |
stream=False
|
| 93 |
-
)
|
| 94 |
return response.choices[0].message.content
|
| 95 |
|
| 96 |
class DocumentGenerator:
|
|
@@ -120,14 +123,14 @@ class DocumentGenerator:
|
|
| 120 |
return content.lstrip()
|
| 121 |
|
| 122 |
@log_execution
|
| 123 |
-
def generate_document_outline(self, query: str, max_retries: int = 3) -> Optional[Dict]:
|
| 124 |
messages = [
|
| 125 |
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM},
|
| 126 |
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query)}
|
| 127 |
]
|
| 128 |
|
| 129 |
for attempt in range(max_retries):
|
| 130 |
-
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
| 131 |
outline_json_text = self.extract_between_tags(outline_response, "output")
|
| 132 |
|
| 133 |
try:
|
|
@@ -142,7 +145,7 @@ class DocumentGenerator:
|
|
| 142 |
return None
|
| 143 |
|
| 144 |
@log_execution
|
| 145 |
-
def generate_content(self, title: str, content_instruction: str, section_number: str) -> str:
|
| 146 |
self.content_messages.append({
|
| 147 |
"role": "user",
|
| 148 |
"content": DOCUMENT_SECTION_PROMPT_USER.format(
|
|
@@ -150,7 +153,7 @@ class DocumentGenerator:
|
|
| 150 |
content_instruction=content_instruction
|
| 151 |
)
|
| 152 |
})
|
| 153 |
-
section_response = self.ai_client.generate_response(self.content_messages)
|
| 154 |
content = self.extract_between_tags(section_response, "response")
|
| 155 |
content = self.remove_duplicate_title(content, title, section_number)
|
| 156 |
self.content_messages.append({
|
|
@@ -160,7 +163,7 @@ class DocumentGenerator:
|
|
| 160 |
return content
|
| 161 |
|
| 162 |
@log_execution
|
| 163 |
-
def generate_full_document(self, document_outline: Dict, query: str)
|
| 164 |
self.document_outline = document_outline
|
| 165 |
|
| 166 |
overall_objective = query
|
|
@@ -181,16 +184,21 @@ class DocumentGenerator:
|
|
| 181 |
section_number = section.get("SectionNumber", "")
|
| 182 |
content_instruction = section.get("Content", "")
|
| 183 |
logger.info(f"Generating content for section: {section_title}")
|
| 184 |
-
section["Content"] = self.generate_content(section_title, content_instruction, section_number)
|
|
|
|
| 185 |
|
| 186 |
for subsection in section.get("Subsections", []):
|
| 187 |
subsection_title = subsection.get("Title", "")
|
| 188 |
subsection_number = subsection.get("SectionNumber", "")
|
| 189 |
subsection_content_instruction = subsection.get("Content", "")
|
| 190 |
logger.info(f"Generating content for subsection: {subsection_title}")
|
| 191 |
-
subsection["Content"] = self.generate_content(subsection_title, subsection_content_instruction, subsection_number)
|
|
|
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
class MarkdownConverter:
|
| 196 |
@staticmethod
|
|
@@ -258,9 +266,6 @@ class MarkdownDocumentRequest(BaseModel):
|
|
| 258 |
json_document: Dict
|
| 259 |
query: str
|
| 260 |
|
| 261 |
-
class MarkdownDocumentResponse(BaseModel):
|
| 262 |
-
markdown_document: str
|
| 263 |
-
|
| 264 |
@cache(expire=600*24*7)
|
| 265 |
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
| 266 |
async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
@@ -269,7 +274,7 @@ async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
| 269 |
|
| 270 |
try:
|
| 271 |
# Generate the document outline
|
| 272 |
-
json_document = document_generator.generate_document_outline(request.query)
|
| 273 |
|
| 274 |
if json_document is None:
|
| 275 |
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
|
@@ -278,21 +283,20 @@ async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
| 278 |
except Exception as e:
|
| 279 |
raise HTTPException(status_code=500, detail=str(e))
|
| 280 |
|
| 281 |
-
@router.post("/generate-document/markdown"
|
| 282 |
async def generate_markdown_document_endpoint(request: MarkdownDocumentRequest):
|
| 283 |
ai_client = AIClient()
|
| 284 |
document_generator = DocumentGenerator(ai_client)
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 296 |
|
| 297 |
@router.post("/generate-document-test", response_model=MarkdownDocumentResponse)
|
| 298 |
async def test_generate_document_endpoint(request: DocumentRequest):
|
|
|
|
| 40 |
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
| 41 |
|
| 42 |
# File: app.py
|
| 43 |
+
import os
|
| 44 |
import json
|
| 45 |
import re
|
| 46 |
import time
|
|
|
|
| 52 |
from fastapi import APIRouter, HTTPException
|
| 53 |
from pydantic import BaseModel
|
| 54 |
from fastapi_cache.decorator import cache
|
| 55 |
+
from starlette.responses import StreamingResponse
|
| 56 |
|
| 57 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 58 |
logger = logging.getLogger(__name__)
|
| 59 |
|
| 60 |
def log_execution(func: Callable) -> Callable:
|
| 61 |
@functools.wraps(func)
|
| 62 |
+
async def wrapper(*args: Any, **kwargs: Any) -> Any:
|
| 63 |
logger.info(f"Executing {func.__name__}")
|
| 64 |
try:
|
| 65 |
+
result = await func(*args, **kwargs)
|
| 66 |
logger.info(f"{func.__name__} completed successfully")
|
| 67 |
return result
|
| 68 |
except Exception as e:
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
@log_execution
|
| 81 |
+
async def generate_response(
|
| 82 |
self,
|
| 83 |
messages: List[Dict[str, str]],
|
| 84 |
model: str = "openai/gpt-4o-mini",
|
|
|
|
| 86 |
) -> Optional[str]:
|
| 87 |
if not messages:
|
| 88 |
return None
|
| 89 |
+
loop = asyncio.get_event_loop()
|
| 90 |
+
response = await loop.run_in_executor(None, functools.partial(
|
| 91 |
+
self.client.chat.completions.create,
|
| 92 |
model=model,
|
| 93 |
messages=messages,
|
| 94 |
max_tokens=max_tokens,
|
| 95 |
stream=False
|
| 96 |
+
))
|
| 97 |
return response.choices[0].message.content
|
| 98 |
|
| 99 |
class DocumentGenerator:
|
|
|
|
| 123 |
return content.lstrip()
|
| 124 |
|
| 125 |
@log_execution
|
| 126 |
+
async def generate_document_outline(self, query: str, max_retries: int = 3) -> Optional[Dict]:
|
| 127 |
messages = [
|
| 128 |
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM},
|
| 129 |
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query)}
|
| 130 |
]
|
| 131 |
|
| 132 |
for attempt in range(max_retries):
|
| 133 |
+
outline_response = await self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
| 134 |
outline_json_text = self.extract_between_tags(outline_response, "output")
|
| 135 |
|
| 136 |
try:
|
|
|
|
| 145 |
return None
|
| 146 |
|
| 147 |
@log_execution
|
| 148 |
+
async def generate_content(self, title: str, content_instruction: str, section_number: str) -> str:
|
| 149 |
self.content_messages.append({
|
| 150 |
"role": "user",
|
| 151 |
"content": DOCUMENT_SECTION_PROMPT_USER.format(
|
|
|
|
| 153 |
content_instruction=content_instruction
|
| 154 |
)
|
| 155 |
})
|
| 156 |
+
section_response = await self.ai_client.generate_response(self.content_messages)
|
| 157 |
content = self.extract_between_tags(section_response, "response")
|
| 158 |
content = self.remove_duplicate_title(content, title, section_number)
|
| 159 |
self.content_messages.append({
|
|
|
|
| 163 |
return content
|
| 164 |
|
| 165 |
@log_execution
|
| 166 |
+
async def generate_full_document(self, document_outline: Dict, query: str):
|
| 167 |
self.document_outline = document_outline
|
| 168 |
|
| 169 |
overall_objective = query
|
|
|
|
| 184 |
section_number = section.get("SectionNumber", "")
|
| 185 |
content_instruction = section.get("Content", "")
|
| 186 |
logger.info(f"Generating content for section: {section_title}")
|
| 187 |
+
section["Content"] = await self.generate_content(section_title, content_instruction, section_number)
|
| 188 |
+
yield json.dumps({"type": "document_section", "content": section}) + "\n"
|
| 189 |
|
| 190 |
for subsection in section.get("Subsections", []):
|
| 191 |
subsection_title = subsection.get("Title", "")
|
| 192 |
subsection_number = subsection.get("SectionNumber", "")
|
| 193 |
subsection_content_instruction = subsection.get("Content", "")
|
| 194 |
logger.info(f"Generating content for subsection: {subsection_title}")
|
| 195 |
+
subsection["Content"] = await self.generate_content(subsection_title, subsection_content_instruction, subsection_number)
|
| 196 |
+
yield json.dumps({"type": "document_subsection", "content": subsection}) + "\n"
|
| 197 |
|
| 198 |
+
# Generate the complete markdown document
|
| 199 |
+
full_document = self.document_outline
|
| 200 |
+
markdown_document = MarkdownConverter.convert_to_markdown(full_document["Document"])
|
| 201 |
+
yield json.dumps({"type": "complete_document", "content": markdown_document}) + "\n"
|
| 202 |
|
| 203 |
class MarkdownConverter:
|
| 204 |
@staticmethod
|
|
|
|
| 266 |
json_document: Dict
|
| 267 |
query: str
|
| 268 |
|
|
|
|
|
|
|
|
|
|
| 269 |
@cache(expire=600*24*7)
|
| 270 |
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
| 271 |
async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
|
|
| 274 |
|
| 275 |
try:
|
| 276 |
# Generate the document outline
|
| 277 |
+
json_document = await document_generator.generate_document_outline(request.query)
|
| 278 |
|
| 279 |
if json_document is None:
|
| 280 |
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
|
|
|
| 283 |
except Exception as e:
|
| 284 |
raise HTTPException(status_code=500, detail=str(e))
|
| 285 |
|
| 286 |
+
@router.post("/generate-document/markdown")
|
| 287 |
async def generate_markdown_document_endpoint(request: MarkdownDocumentRequest):
|
| 288 |
ai_client = AIClient()
|
| 289 |
document_generator = DocumentGenerator(ai_client)
|
| 290 |
|
| 291 |
+
async def event_stream():
|
| 292 |
+
try:
|
| 293 |
+
# Generate the full document content and stream it
|
| 294 |
+
async for section in document_generator.generate_full_document(request.json_document, request.query):
|
| 295 |
+
yield section
|
| 296 |
+
except Exception as e:
|
| 297 |
+
yield json.dumps({"type": "error", "message": str(e)}) + "\n"
|
| 298 |
+
|
| 299 |
+
return StreamingResponse(event_stream(), media_type="application/json")
|
|
|
|
| 300 |
|
| 301 |
@router.post("/generate-document-test", response_model=MarkdownDocumentResponse)
|
| 302 |
async def test_generate_document_endpoint(request: DocumentRequest):
|