Update main.py
Browse files
main.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
-
from pydantic import BaseModel
|
| 4 |
from typing import List
|
| 5 |
import json
|
| 6 |
import os
|
|
@@ -11,7 +11,11 @@ from txtai.embeddings import Embeddings
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
-
app = FastAPI(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Enable CORS
|
| 17 |
app.add_middleware(
|
|
@@ -25,22 +29,20 @@ app.add_middleware(
|
|
| 25 |
embeddings = Embeddings({"path": "avsolatorio/GIST-all-MiniLM-L6-v2"})
|
| 26 |
|
| 27 |
class DocumentRequest(BaseModel):
|
| 28 |
-
index_id: str
|
| 29 |
-
documents: List[str]
|
| 30 |
|
| 31 |
class QueryRequest(BaseModel):
|
| 32 |
-
index_id: str
|
| 33 |
-
query: str
|
| 34 |
-
num_results: int
|
| 35 |
|
| 36 |
-
def save_embeddings(index_id, document_list):
|
| 37 |
try:
|
| 38 |
folder_path = f"/app/indexes/{index_id}"
|
| 39 |
os.makedirs(folder_path, exist_ok=True)
|
| 40 |
-
|
| 41 |
# Save embeddings
|
| 42 |
embeddings.save(f"{folder_path}/embeddings")
|
| 43 |
-
|
| 44 |
# Save document_list
|
| 45 |
with open(f"{folder_path}/document_list.json", "w") as f:
|
| 46 |
json.dump(document_list, f)
|
|
@@ -49,29 +51,31 @@ def save_embeddings(index_id, document_list):
|
|
| 49 |
logger.error(f"Error saving embeddings for index_id {index_id}: {str(e)}")
|
| 50 |
raise HTTPException(status_code=500, detail=f"Error saving embeddings: {str(e)}")
|
| 51 |
|
| 52 |
-
def load_embeddings(index_id):
|
| 53 |
try:
|
| 54 |
folder_path = f"/app/indexes/{index_id}"
|
| 55 |
-
|
| 56 |
if not os.path.exists(folder_path):
|
| 57 |
logger.error(f"Index not found for index_id: {index_id}")
|
| 58 |
raise HTTPException(status_code=404, detail="Index not found")
|
| 59 |
-
|
| 60 |
# Load embeddings
|
| 61 |
embeddings.load(f"{folder_path}/embeddings")
|
| 62 |
-
|
| 63 |
# Load document_list
|
| 64 |
with open(f"{folder_path}/document_list.json", "r") as f:
|
| 65 |
document_list = json.load(f)
|
| 66 |
-
|
| 67 |
logger.info(f"Embeddings and document list loaded for index_id: {index_id}")
|
| 68 |
return document_list
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"Error loading embeddings for index_id {index_id}: {str(e)}")
|
| 71 |
raise HTTPException(status_code=500, detail=f"Error loading embeddings: {str(e)}")
|
| 72 |
|
| 73 |
-
@app.post("/create_index/")
|
| 74 |
async def create_index(request: DocumentRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
try:
|
| 76 |
document_list = [(i, text, None) for i, text in enumerate(request.documents)]
|
| 77 |
embeddings.index(document_list)
|
|
@@ -82,8 +86,15 @@ async def create_index(request: DocumentRequest):
|
|
| 82 |
logger.error(f"Error creating index: {str(e)}")
|
| 83 |
raise HTTPException(status_code=500, detail=f"Error creating index: {str(e)}")
|
| 84 |
|
| 85 |
-
@app.post("/query_index/")
|
| 86 |
async def query_index(request: QueryRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
try:
|
| 88 |
document_list = load_embeddings(request.index_id)
|
| 89 |
results = embeddings.search(request.query, request.num_results)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Query, Path
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel, Field
|
| 4 |
from typing import List
|
| 5 |
import json
|
| 6 |
import os
|
|
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
+
app = FastAPI(
|
| 15 |
+
title="Embeddings API",
|
| 16 |
+
description="An API for creating and querying text embeddings indexes.",
|
| 17 |
+
version="1.0.0"
|
| 18 |
+
)
|
| 19 |
|
| 20 |
# Enable CORS
|
| 21 |
app.add_middleware(
|
|
|
|
| 29 |
embeddings = Embeddings({"path": "avsolatorio/GIST-all-MiniLM-L6-v2"})
|
| 30 |
|
| 31 |
class DocumentRequest(BaseModel):
|
| 32 |
+
index_id: str = Field(..., description="Unique identifier for the index")
|
| 33 |
+
documents: List[str] = Field(..., description="List of documents to be indexed")
|
| 34 |
|
| 35 |
class QueryRequest(BaseModel):
|
| 36 |
+
index_id: str = Field(..., description="Unique identifier for the index to query")
|
| 37 |
+
query: str = Field(..., description="The search query")
|
| 38 |
+
num_results: int = Field(..., description="Number of results to return", ge=1)
|
| 39 |
|
| 40 |
+
def save_embeddings(index_id: str, document_list: List[str]):
|
| 41 |
try:
|
| 42 |
folder_path = f"/app/indexes/{index_id}"
|
| 43 |
os.makedirs(folder_path, exist_ok=True)
|
|
|
|
| 44 |
# Save embeddings
|
| 45 |
embeddings.save(f"{folder_path}/embeddings")
|
|
|
|
| 46 |
# Save document_list
|
| 47 |
with open(f"{folder_path}/document_list.json", "w") as f:
|
| 48 |
json.dump(document_list, f)
|
|
|
|
| 51 |
logger.error(f"Error saving embeddings for index_id {index_id}: {str(e)}")
|
| 52 |
raise HTTPException(status_code=500, detail=f"Error saving embeddings: {str(e)}")
|
| 53 |
|
| 54 |
+
def load_embeddings(index_id: str) -> List[str]:
|
| 55 |
try:
|
| 56 |
folder_path = f"/app/indexes/{index_id}"
|
|
|
|
| 57 |
if not os.path.exists(folder_path):
|
| 58 |
logger.error(f"Index not found for index_id: {index_id}")
|
| 59 |
raise HTTPException(status_code=404, detail="Index not found")
|
|
|
|
| 60 |
# Load embeddings
|
| 61 |
embeddings.load(f"{folder_path}/embeddings")
|
|
|
|
| 62 |
# Load document_list
|
| 63 |
with open(f"{folder_path}/document_list.json", "r") as f:
|
| 64 |
document_list = json.load(f)
|
|
|
|
| 65 |
logger.info(f"Embeddings and document list loaded for index_id: {index_id}")
|
| 66 |
return document_list
|
| 67 |
except Exception as e:
|
| 68 |
logger.error(f"Error loading embeddings for index_id {index_id}: {str(e)}")
|
| 69 |
raise HTTPException(status_code=500, detail=f"Error loading embeddings: {str(e)}")
|
| 70 |
|
| 71 |
+
@app.post("/create_index/", response_model=dict, tags=["Index Operations"])
|
| 72 |
async def create_index(request: DocumentRequest):
|
| 73 |
+
"""
|
| 74 |
+
Create a new index with the given documents.
|
| 75 |
+
|
| 76 |
+
- **index_id**: Unique identifier for the index
|
| 77 |
+
- **documents**: List of documents to be indexed
|
| 78 |
+
"""
|
| 79 |
try:
|
| 80 |
document_list = [(i, text, None) for i, text in enumerate(request.documents)]
|
| 81 |
embeddings.index(document_list)
|
|
|
|
| 86 |
logger.error(f"Error creating index: {str(e)}")
|
| 87 |
raise HTTPException(status_code=500, detail=f"Error creating index: {str(e)}")
|
| 88 |
|
| 89 |
+
@app.post("/query_index/", response_model=dict, tags=["Index Operations"])
|
| 90 |
async def query_index(request: QueryRequest):
|
| 91 |
+
"""
|
| 92 |
+
Query an existing index with the given search query.
|
| 93 |
+
|
| 94 |
+
- **index_id**: Unique identifier for the index to query
|
| 95 |
+
- **query**: The search query
|
| 96 |
+
- **num_results**: Number of results to return
|
| 97 |
+
"""
|
| 98 |
try:
|
| 99 |
document_list = load_embeddings(request.index_id)
|
| 100 |
results = embeddings.search(request.query, request.num_results)
|