Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks | |
| from fastapi.security import APIKeyHeader | |
| from fastapi.responses import StreamingResponse | |
| from pydantic import BaseModel, Field | |
| from typing import Literal, List, Dict | |
| import os | |
| from functools import lru_cache | |
| from openai import OpenAI | |
| from uuid import uuid4 | |
| import tiktoken | |
| import sqlite3 | |
| import time | |
| from datetime import datetime, timedelta | |
| import asyncio | |
| import requests | |
| from prompts import CODING_ASSISTANT_PROMPT, NEWS_ASSISTANT_PROMPT, generate_news_prompt | |
| from fastapi_cache import FastAPICache | |
| from fastapi_cache.backends.inmemory import InMemoryBackend | |
| from fastapi_cache.decorator import cache | |
| app = FastAPI() | |
| API_KEY_NAME = "X-API-Key" | |
| API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key") | |
| api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) | |
| ModelID = Literal[ | |
| "meta-llama/llama-3-70b-instruct", | |
| "anthropic/claude-3.5-sonnet", | |
| "deepseek/deepseek-coder", | |
| "anthropic/claude-3-haiku", | |
| "openai/gpt-3.5-turbo-instruct", | |
| "qwen/qwen-72b-chat", | |
| "google/gemma-2-27b-it" | |
| ] | |
| class QueryModel(BaseModel): | |
| user_query: str = Field(..., description="User's coding query") | |
| model_id: ModelID = Field( | |
| default="meta-llama/llama-3-70b-instruct", | |
| description="ID of the model to use for response generation" | |
| ) | |
| conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation") | |
| user_id: str = Field(..., description="Unique identifier for the user") | |
| class Config: | |
| schema_extra = { | |
| "example": { | |
| "user_query": "How do I implement a binary search in Python?", | |
| "model_id": "meta-llama/llama-3-70b-instruct", | |
| "conversation_id": "123e4567-e89b-12d3-a456-426614174000", | |
| "user_id": "user123" | |
| } | |
| } | |
| class NewsQueryModel(BaseModel): | |
| query: str = Field(..., description="News topic to search for") | |
| class Config: | |
| schema_extra = { | |
| "example": { | |
| "query": "Latest developments in AI" | |
| } | |
| } | |
| def get_api_keys(): | |
| return { | |
| "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}", | |
| "BRAVE_API_KEY": os.environ['BRAVE_API_KEY'] | |
| } | |
| api_keys = get_api_keys() | |
| or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1") | |
| # In-memory storage for conversations | |
| conversations: Dict[str, List[Dict[str, str]]] = {} | |
| last_activity: Dict[str, float] = {} | |
| # Token encoding | |
| encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
| def limit_tokens(input_string, token_limit=6000): | |
| return encoding.decode(encoding.encode(input_string)[:token_limit]) | |
| def calculate_tokens(msgs): | |
| return sum(len(encoding.encode(str(m))) for m in msgs) | |
| def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500): | |
| while calculate_tokens(messages) > (8000 - max_output_tokens): | |
| if len(messages) > max_llm_history: | |
| messages = [messages[0]] + messages[-max_llm_history:] | |
| else: | |
| max_llm_history -= 1 | |
| if max_llm_history < 2: | |
| error_message = "Token limit exceeded. Please shorten your input or start a new conversation." | |
| raise HTTPException(status_code=400, detail=error_message) | |
| try: | |
| response = or_client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| max_tokens=max_output_tokens, | |
| stream=True | |
| ) | |
| full_response = "" | |
| for chunk in response: | |
| if chunk.choices[0].delta.content is not None: | |
| content = chunk.choices[0].delta.content | |
| full_response += content | |
| yield content | |
| # After streaming, add the full response to the conversation history | |
| messages.append({"role": "assistant", "content": full_response}) | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}") | |
| async def verify_api_key(api_key: str = Security(api_key_header)): | |
| if api_key != API_KEY: | |
| raise HTTPException(status_code=403, detail="Could not validate credentials") | |
| return api_key | |
| # SQLite setup | |
| DB_PATH = '/app/data/conversations.db' | |
| def init_db(): | |
| os.makedirs(os.path.dirname(DB_PATH), exist_ok=True) | |
| conn = sqlite3.connect(DB_PATH) | |
| c = conn.cursor() | |
| c.execute('''CREATE TABLE IF NOT EXISTS conversations | |
| (id INTEGER PRIMARY KEY AUTOINCREMENT, | |
| user_id TEXT, | |
| conversation_id TEXT, | |
| message TEXT, | |
| response TEXT, | |
| timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''') | |
| conn.commit() | |
| conn.close() | |
| init_db() | |
| def update_db(user_id, conversation_id, message, response): | |
| conn = sqlite3.connect(DB_PATH) | |
| c = conn.cursor() | |
| c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response) | |
| VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response)) | |
| conn.commit() | |
| conn.close() | |
| async def clear_inactive_conversations(): | |
| while True: | |
| current_time = time.time() | |
| inactive_convos = [conv_id for conv_id, last_time in last_activity.items() | |
| if current_time - last_time > 1800] # 30 minutes | |
| for conv_id in inactive_convos: | |
| if conv_id in conversations: | |
| del conversations[conv_id] | |
| if conv_id in last_activity: | |
| del last_activity[conv_id] | |
| await asyncio.sleep(60) # Check every minute | |
| async def startup_event(): | |
| FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache") | |
| asyncio.create_task(clear_inactive_conversations()) | |
| async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): | |
| """ | |
| Coding assistant endpoint that provides programming help based on user queries. | |
| Available models: | |
| - meta-llama/llama-3-70b-instruct (default) | |
| - anthropic/claude-3.5-sonnet | |
| - deepseek/deepseek-coder | |
| - anthropic/claude-3-haiku | |
| - openai/gpt-3.5-turbo-instruct | |
| - qwen/qwen-72b-chat | |
| - google/gemma-2-27b-it | |
| Requires API Key authentication via X-API-Key header. | |
| """ | |
| if query.conversation_id not in conversations: | |
| conversations[query.conversation_id] = [ | |
| {"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."} | |
| ] | |
| conversations[query.conversation_id].append({"role": "user", "content": query.user_query}) | |
| last_activity[query.conversation_id] = time.time() | |
| # Limit tokens in the conversation history | |
| limited_conversation = conversations[query.conversation_id] | |
| def process_response(): | |
| full_response = "" | |
| for content in chat_with_llama_stream(limited_conversation, model=query.model_id): | |
| full_response += content | |
| yield content | |
| background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response) | |
| return StreamingResponse(process_response(), media_type="text/event-stream") | |
| # New functions for news assistant | |
| def fetch_news(query, num_results=20): | |
| url = "https://api.search.brave.com/res/v1/news/search" | |
| headers = { | |
| "Accept": "application/json", | |
| "Accept-Encoding": "gzip", | |
| "X-Subscription-Token": api_keys["BRAVE_API_KEY"] | |
| } | |
| params = {"q": query} | |
| response = requests.get(url, headers=headers, params=params) | |
| if response.status_code == 200: | |
| news_data = response.json() | |
| return [ | |
| { | |
| "title": item["title"], | |
| "snippet": item["extra_snippets"][0] if "extra_snippets" in item and item["extra_snippets"] else "", | |
| "last_updated": item.get("age", ""), | |
| } | |
| for item in news_data['results'] | |
| if "extra_snippets" in item and item["extra_snippets"] | |
| ][:num_results] | |
| else: | |
| return [] | |
| def cached_fetch_news(query: str): | |
| return fetch_news(query) | |
| def analyze_news(query): | |
| news_data = cached_fetch_news(query) | |
| if not news_data: | |
| return "Failed to fetch news data.", [] | |
| # Prepare the prompt for the AI | |
| # Use the imported function to generate the prompt (now includes today's date) | |
| prompt = generate_news_prompt(query, news_data) | |
| messages = [ | |
| {"role": "system", "content": NEWS_ASSISTANT_PROMPT}, | |
| {"role": "user", "content": prompt} | |
| ] | |
| return messages | |
| async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_api_key)): | |
| """ | |
| News assistant endpoint that provides summaries and analysis of recent news based on user queries. | |
| Requires API Key authentication via X-API-Key header. | |
| """ | |
| messages = analyze_news(query.query) | |
| if not messages: | |
| raise HTTPException(status_code=500, detail="Failed to fetch news data") | |
| def process_response(): | |
| for content in chat_with_llama_stream(messages, model="google/gemini-pro-1.5"): | |
| yield content | |
| return StreamingResponse(process_response(), media_type="text/event-stream") | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |