Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -12,6 +12,7 @@ import sqlite3
|
|
| 12 |
import time
|
| 13 |
from datetime import datetime, timedelta
|
| 14 |
import asyncio
|
|
|
|
| 15 |
|
| 16 |
app = FastAPI()
|
| 17 |
|
|
@@ -48,10 +49,21 @@ class QueryModel(BaseModel):
|
|
| 48 |
}
|
| 49 |
}
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
@lru_cache()
|
| 52 |
def get_api_keys():
|
| 53 |
return {
|
| 54 |
-
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}"
|
|
|
|
| 55 |
}
|
| 56 |
|
| 57 |
api_keys = get_api_keys()
|
|
@@ -152,7 +164,6 @@ async def startup_event():
|
|
| 152 |
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 153 |
"""
|
| 154 |
Coding assistant endpoint that provides programming help based on user queries.
|
| 155 |
-
|
| 156 |
Available models:
|
| 157 |
- meta-llama/llama-3-70b-instruct (default)
|
| 158 |
- anthropic/claude-3.5-sonnet
|
|
@@ -161,7 +172,6 @@ async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks,
|
|
| 161 |
- openai/gpt-3.5-turbo-instruct
|
| 162 |
- qwen/qwen-72b-chat
|
| 163 |
- google/gemma-2-27b-it
|
| 164 |
-
|
| 165 |
Requires API Key authentication via X-API-Key header.
|
| 166 |
"""
|
| 167 |
if query.conversation_id not in conversations:
|
|
@@ -184,6 +194,69 @@ async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks,
|
|
| 184 |
|
| 185 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
if __name__ == "__main__":
|
| 188 |
import uvicorn
|
| 189 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 12 |
import time
|
| 13 |
from datetime import datetime, timedelta
|
| 14 |
import asyncio
|
| 15 |
+
import requests
|
| 16 |
|
| 17 |
app = FastAPI()
|
| 18 |
|
|
|
|
| 49 |
}
|
| 50 |
}
|
| 51 |
|
| 52 |
+
class NewsQueryModel(BaseModel):
|
| 53 |
+
query: str = Field(..., description="News topic to search for")
|
| 54 |
+
|
| 55 |
+
class Config:
|
| 56 |
+
schema_extra = {
|
| 57 |
+
"example": {
|
| 58 |
+
"query": "Latest developments in AI"
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
@lru_cache()
|
| 63 |
def get_api_keys():
|
| 64 |
return {
|
| 65 |
+
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
|
| 66 |
+
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
|
| 67 |
}
|
| 68 |
|
| 69 |
api_keys = get_api_keys()
|
|
|
|
| 164 |
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 165 |
"""
|
| 166 |
Coding assistant endpoint that provides programming help based on user queries.
|
|
|
|
| 167 |
Available models:
|
| 168 |
- meta-llama/llama-3-70b-instruct (default)
|
| 169 |
- anthropic/claude-3.5-sonnet
|
|
|
|
| 172 |
- openai/gpt-3.5-turbo-instruct
|
| 173 |
- qwen/qwen-72b-chat
|
| 174 |
- google/gemma-2-27b-it
|
|
|
|
| 175 |
Requires API Key authentication via X-API-Key header.
|
| 176 |
"""
|
| 177 |
if query.conversation_id not in conversations:
|
|
|
|
| 194 |
|
| 195 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 196 |
|
| 197 |
+
# New functions for news assistant
|
| 198 |
+
def fetch_news(query, num_results=20):
|
| 199 |
+
url = "https://api.search.brave.com/res/v1/news/search"
|
| 200 |
+
headers = {
|
| 201 |
+
"Accept": "application/json",
|
| 202 |
+
"Accept-Encoding": "gzip",
|
| 203 |
+
"X-Subscription-Token": api_keys["BRAVE_API_KEY"]
|
| 204 |
+
}
|
| 205 |
+
params = {"q": query}
|
| 206 |
+
|
| 207 |
+
response = requests.get(url, headers=headers, params=params)
|
| 208 |
+
|
| 209 |
+
if response.status_code == 200:
|
| 210 |
+
news_data = response.json()
|
| 211 |
+
return [
|
| 212 |
+
{
|
| 213 |
+
"title": item["title"],
|
| 214 |
+
"snippet": item["extra_snippets"][0] if "extra_snippets" in item and item["extra_snippets"] else "",
|
| 215 |
+
"last_updated": item.get("age", ""),
|
| 216 |
+
}
|
| 217 |
+
for item in news_data['results']
|
| 218 |
+
if "extra_snippets" in item and item["extra_snippets"]
|
| 219 |
+
][:num_results]
|
| 220 |
+
else:
|
| 221 |
+
return []
|
| 222 |
+
|
| 223 |
+
def analyze_news(query):
|
| 224 |
+
news_data = fetch_news(query)
|
| 225 |
+
|
| 226 |
+
if not news_data:
|
| 227 |
+
return "Failed to fetch news data.", []
|
| 228 |
+
|
| 229 |
+
# Prepare the prompt for the AI
|
| 230 |
+
prompt = f"Based on the following recent news about '{query}', Provide a well summarized and formatted answer using markdown, give importance to the latest news:\n\n"
|
| 231 |
+
for item in news_data:
|
| 232 |
+
prompt += f"Title: {item['title']}\n"
|
| 233 |
+
prompt += f"Snippet: {item['snippet']}\n"
|
| 234 |
+
prompt += f"Last Updated: {item['last_updated']}\n\n"
|
| 235 |
+
|
| 236 |
+
messages = [
|
| 237 |
+
{"role": "system", "content": "You are a knowledgeable Assistant capable of providing insightful answers on various topics."},
|
| 238 |
+
{"role": "user", "content": prompt}
|
| 239 |
+
]
|
| 240 |
+
|
| 241 |
+
return messages
|
| 242 |
+
|
| 243 |
+
@app.post("/news-assistant")
|
| 244 |
+
async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_api_key)):
|
| 245 |
+
"""
|
| 246 |
+
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
|
| 247 |
+
Requires API Key authentication via X-API-Key header.
|
| 248 |
+
"""
|
| 249 |
+
messages = analyze_news(query.query)
|
| 250 |
+
|
| 251 |
+
if not messages:
|
| 252 |
+
raise HTTPException(status_code=500, detail="Failed to fetch news data")
|
| 253 |
+
|
| 254 |
+
def process_response():
|
| 255 |
+
for content in chat_with_llama_stream(messages, model="meta-llama/llama-3-70b-instruct"):
|
| 256 |
+
yield content
|
| 257 |
+
|
| 258 |
+
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 259 |
+
|
| 260 |
if __name__ == "__main__":
|
| 261 |
import uvicorn
|
| 262 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|