Spaces:
Sleeping
Sleeping
Create document_generator_v4.py
Browse files- document_generator_v4.py +657 -0
document_generator_v4.py
ADDED
|
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# File: prompts.py
|
| 2 |
+
|
| 3 |
+
DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
|
| 4 |
+
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection.
|
| 5 |
+
make sure the Pages follow a logical flow and each prompt's content does not overlap with other pages.
|
| 6 |
+
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
|
| 7 |
+
<output>
|
| 8 |
+
{
|
| 9 |
+
"Document": {
|
| 10 |
+
"Title": "Document Title",
|
| 11 |
+
"Author": "Author Name",
|
| 12 |
+
"Date": "YYYY-MM-DD",
|
| 13 |
+
"Version": "1.0",
|
| 14 |
+
|
| 15 |
+
"Pages": [
|
| 16 |
+
{
|
| 17 |
+
"PageNumber": "1",
|
| 18 |
+
"Title": "Section Title",
|
| 19 |
+
"Content": "overview", # Optional: Short overview of the Section, if not required leave it as "" empty string
|
| 20 |
+
"Subsections": [
|
| 21 |
+
{
|
| 22 |
+
"PageNumber": "1.1",
|
| 23 |
+
"Title": "Subsection Title",
|
| 24 |
+
"Content": "Specific prompt or instruction for generating content for this subsection"
|
| 25 |
+
}
|
| 26 |
+
]
|
| 27 |
+
}
|
| 28 |
+
]
|
| 29 |
+
}
|
| 30 |
+
}
|
| 31 |
+
</output>"""
|
| 32 |
+
|
| 33 |
+
DOCUMENT_OUTLINE_PROMPT_USER = """Generate a document outline {num_pages}for the following query: <prompt>{query}</prompt>"""
|
| 34 |
+
|
| 35 |
+
DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, replace the section/subsection prompts with the requested content.
|
| 36 |
+
OUTPUT AS A WELL FORMATED DOCUMENT ENCLOSED IN <response></response> tags
|
| 37 |
+
<overall_objective>{overall_objective}</overall_objective>
|
| 38 |
+
<document_layout>{document_layout}</document_layout>"""
|
| 39 |
+
|
| 40 |
+
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content requested formatted as markdown. Follow the instructions below title/subtitle to replace it with appropriate content: {content_instruction}</prompt>"""
|
| 41 |
+
|
| 42 |
+
##########################################
|
| 43 |
+
|
| 44 |
+
DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM = """You are a document template generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
|
| 45 |
+
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating template with placeholder text /example content for that particular section or subsection. Specify in each prompt to output as a template and use placeholder text/ tables as necessory.
|
| 46 |
+
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections.
|
| 47 |
+
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
|
| 48 |
+
<output>
|
| 49 |
+
{
|
| 50 |
+
"Document": {
|
| 51 |
+
"Title": "Document Title",
|
| 52 |
+
"Author": "Author Name",
|
| 53 |
+
"Date": "YYYY-MM-DD",
|
| 54 |
+
"Version": "1.0",
|
| 55 |
+
|
| 56 |
+
"Pages": [
|
| 57 |
+
{
|
| 58 |
+
"PageNumber": "1",
|
| 59 |
+
"Title": "Section Title",
|
| 60 |
+
"Content": "Specific prompt or instruction for generating template for this section",
|
| 61 |
+
"Subsections": [
|
| 62 |
+
{
|
| 63 |
+
"PageNumber": "1.1",
|
| 64 |
+
"Title": "Subsection Title",
|
| 65 |
+
"Content": "Specific prompt or instruction for generating template for this subsection"
|
| 66 |
+
}
|
| 67 |
+
]
|
| 68 |
+
}
|
| 69 |
+
]
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
</output>"""
|
| 73 |
+
|
| 74 |
+
DOCUMENT_TEMPLATE_PROMPT_USER = """Generate a document template outline {num_pages} for the following query:<prompt>{query}</prompt>"""
|
| 75 |
+
|
| 76 |
+
DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM = """You are a document template generator, replace the section/subsection prompts with the requested content, Use placeholder text/examples/tables wherever required.
|
| 77 |
+
FORMAT YOUR OUTPUT AS A TEMPLATE ENCLOSED IN <response></response> tags
|
| 78 |
+
<overall_objective>{overall_objective}</overall_objective>
|
| 79 |
+
<document_layout>{document_layout}</document_layout>"""
|
| 80 |
+
|
| 81 |
+
DOCUMENT_TEMPLATE_SECTION_PROMPT_USER = """<prompt>Output the content requested formatted as markdown. Follow the instructions below title/subtitle to replace it with appropriate content: {content_instruction}</prompt>"""
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# File: llm_observability.py
|
| 85 |
+
|
| 86 |
+
import sqlite3
|
| 87 |
+
import json
|
| 88 |
+
from datetime import datetime
|
| 89 |
+
from typing import Dict, Any, List, Optional
|
| 90 |
+
|
| 91 |
+
class LLMObservabilityManager:
|
| 92 |
+
def __init__(self, db_path: str = "llm_observability_v2.db"):
|
| 93 |
+
self.db_path = db_path
|
| 94 |
+
self.create_table()
|
| 95 |
+
|
| 96 |
+
def create_table(self):
|
| 97 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 98 |
+
cursor = conn.cursor()
|
| 99 |
+
cursor.execute('''
|
| 100 |
+
CREATE TABLE IF NOT EXISTS llm_observations (
|
| 101 |
+
id TEXT PRIMARY KEY,
|
| 102 |
+
conversation_id TEXT,
|
| 103 |
+
created_at DATETIME,
|
| 104 |
+
status TEXT,
|
| 105 |
+
request TEXT,
|
| 106 |
+
response TEXT,
|
| 107 |
+
model TEXT,
|
| 108 |
+
total_tokens INTEGER,
|
| 109 |
+
prompt_tokens INTEGER,
|
| 110 |
+
completion_tokens INTEGER,
|
| 111 |
+
latency FLOAT,
|
| 112 |
+
user TEXT
|
| 113 |
+
)
|
| 114 |
+
''')
|
| 115 |
+
|
| 116 |
+
def insert_observation(self, response: Dict[str, Any], conversation_id: str, status: str, request: str, latency: float, user: str):
|
| 117 |
+
created_at = datetime.fromtimestamp(response['created'])
|
| 118 |
+
|
| 119 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 120 |
+
cursor = conn.cursor()
|
| 121 |
+
cursor.execute('''
|
| 122 |
+
INSERT INTO llm_observations
|
| 123 |
+
(id, conversation_id, created_at, status, request, response, model, total_tokens, prompt_tokens, completion_tokens, latency, user)
|
| 124 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
| 125 |
+
''', (
|
| 126 |
+
response['id'],
|
| 127 |
+
conversation_id,
|
| 128 |
+
created_at,
|
| 129 |
+
status,
|
| 130 |
+
request,
|
| 131 |
+
json.dumps(response['choices'][0]['message']),
|
| 132 |
+
response['model'],
|
| 133 |
+
response['usage']['total_tokens'],
|
| 134 |
+
response['usage']['prompt_tokens'],
|
| 135 |
+
response['usage']['completion_tokens'],
|
| 136 |
+
latency,
|
| 137 |
+
user
|
| 138 |
+
))
|
| 139 |
+
|
| 140 |
+
def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
| 141 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 142 |
+
cursor = conn.cursor()
|
| 143 |
+
if conversation_id:
|
| 144 |
+
cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,))
|
| 145 |
+
else:
|
| 146 |
+
cursor.execute('SELECT * FROM llm_observations ORDER BY created_at')
|
| 147 |
+
rows = cursor.fetchall()
|
| 148 |
+
|
| 149 |
+
column_names = [description[0] for description in cursor.description]
|
| 150 |
+
return [dict(zip(column_names, row)) for row in rows]
|
| 151 |
+
|
| 152 |
+
def get_all_observations(self) -> List[Dict[str, Any]]:
|
| 153 |
+
return self.get_observations()
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# File: app.py
|
| 157 |
+
import os
|
| 158 |
+
import json
|
| 159 |
+
import re
|
| 160 |
+
import asyncio
|
| 161 |
+
import time
|
| 162 |
+
from typing import List, Dict, Optional, Any, Callable, Union
|
| 163 |
+
from openai import AsyncOpenAI
|
| 164 |
+
import logging
|
| 165 |
+
import functools
|
| 166 |
+
from fastapi import APIRouter, HTTPException, Request, UploadFile, File, Depends
|
| 167 |
+
from fastapi.responses import StreamingResponse
|
| 168 |
+
from pydantic import BaseModel
|
| 169 |
+
from fastapi_cache import FastAPICache
|
| 170 |
+
from fastapi_cache.decorator import cache
|
| 171 |
+
import psycopg2
|
| 172 |
+
from datetime import datetime
|
| 173 |
+
import base64
|
| 174 |
+
from fastapi import Form
|
| 175 |
+
|
| 176 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 177 |
+
logger = logging.getLogger(__name__)
|
| 178 |
+
|
| 179 |
+
def log_execution(func: Callable) -> Callable:
|
| 180 |
+
@functools.wraps(func)
|
| 181 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
| 182 |
+
logger.info(f"Executing {func.__name__}")
|
| 183 |
+
try:
|
| 184 |
+
result = func(*args, **kwargs)
|
| 185 |
+
logger.info(f"{func.__name__} completed successfully")
|
| 186 |
+
return result
|
| 187 |
+
except Exception as e:
|
| 188 |
+
logger.error(f"Error in {func.__name__}: {e}")
|
| 189 |
+
raise
|
| 190 |
+
return wrapper
|
| 191 |
+
|
| 192 |
+
# aiclient.py
|
| 193 |
+
|
| 194 |
+
class AIClient:
|
| 195 |
+
def __init__(self):
|
| 196 |
+
self.client = AsyncOpenAI(
|
| 197 |
+
base_url="https://openrouter.ai/api/v1",
|
| 198 |
+
api_key="sk-or-v1-" + os.environ['OPENROUTER_API_KEY']
|
| 199 |
+
)
|
| 200 |
+
self.observability_manager = LLMObservabilityManager()
|
| 201 |
+
|
| 202 |
+
@log_execution
|
| 203 |
+
async def generate_response(
|
| 204 |
+
self,
|
| 205 |
+
messages: List[Dict[str, str]],
|
| 206 |
+
model: str = "openai/gpt-4o-mini",
|
| 207 |
+
max_tokens: int = 32000,
|
| 208 |
+
conversation_id: str = None,
|
| 209 |
+
user: str = "anonymous"
|
| 210 |
+
) -> Optional[str]:
|
| 211 |
+
if not messages:
|
| 212 |
+
return None
|
| 213 |
+
|
| 214 |
+
start_time = time.time()
|
| 215 |
+
response = await self.client.chat.completions.create(
|
| 216 |
+
model=model,
|
| 217 |
+
messages=messages,
|
| 218 |
+
max_tokens=max_tokens
|
| 219 |
+
)
|
| 220 |
+
end_time = time.time()
|
| 221 |
+
latency = end_time - start_time
|
| 222 |
+
|
| 223 |
+
# Log the observation
|
| 224 |
+
self.observability_manager.insert_observation(
|
| 225 |
+
response=response.dict(),
|
| 226 |
+
conversation_id=conversation_id or "default",
|
| 227 |
+
status="success",
|
| 228 |
+
request=json.dumps(messages),
|
| 229 |
+
latency=latency,
|
| 230 |
+
user=user
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
return response.choices[0].message.content
|
| 234 |
+
|
| 235 |
+
@log_execution
|
| 236 |
+
async def generate_vision_response(
|
| 237 |
+
self,
|
| 238 |
+
messages: List[Dict[str, Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]]],
|
| 239 |
+
model: str = "google/gemini-flash-1.5-8b",
|
| 240 |
+
max_tokens: int = 32000,
|
| 241 |
+
conversation_id: str = None,
|
| 242 |
+
user: str = "anonymous"
|
| 243 |
+
) -> Optional[str]:
|
| 244 |
+
if not messages:
|
| 245 |
+
return None
|
| 246 |
+
|
| 247 |
+
start_time = time.time()
|
| 248 |
+
response = await self.client.chat.completions.create(
|
| 249 |
+
model=model,
|
| 250 |
+
messages=messages,
|
| 251 |
+
max_tokens=max_tokens
|
| 252 |
+
)
|
| 253 |
+
end_time = time.time()
|
| 254 |
+
latency = end_time - start_time
|
| 255 |
+
|
| 256 |
+
# Log the observation
|
| 257 |
+
self.observability_manager.insert_observation(
|
| 258 |
+
response=response.dict(),
|
| 259 |
+
conversation_id=conversation_id or "default",
|
| 260 |
+
status="success",
|
| 261 |
+
request=json.dumps(messages),
|
| 262 |
+
latency=latency,
|
| 263 |
+
user=user
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
return response.choices[0].message.content
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class VisionTools:
|
| 270 |
+
def __init__(self, ai_client):
|
| 271 |
+
self.ai_client = ai_client
|
| 272 |
+
|
| 273 |
+
async def extract_images_info(self, images: List[UploadFile]) -> str:
|
| 274 |
+
try:
|
| 275 |
+
image_contents = []
|
| 276 |
+
for image in images:
|
| 277 |
+
image_content = await image.read()
|
| 278 |
+
base64_image = base64.b64encode(image_content).decode('utf-8')
|
| 279 |
+
image_contents.append({
|
| 280 |
+
"type": "image_url",
|
| 281 |
+
"image_url": {
|
| 282 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
| 283 |
+
}
|
| 284 |
+
})
|
| 285 |
+
|
| 286 |
+
messages = [
|
| 287 |
+
{
|
| 288 |
+
"role": "user",
|
| 289 |
+
"content": [
|
| 290 |
+
{
|
| 291 |
+
"type": "text",
|
| 292 |
+
"text": "Extract the contents of these images in detail in a structured format, focusing on any text, tables, diagrams, or visual elements that might be relevant for document generation."
|
| 293 |
+
},
|
| 294 |
+
*image_contents
|
| 295 |
+
]
|
| 296 |
+
}
|
| 297 |
+
]
|
| 298 |
+
|
| 299 |
+
image_context = await self.ai_client.generate_vision_response(messages)
|
| 300 |
+
return image_context
|
| 301 |
+
except Exception as e:
|
| 302 |
+
print(f"Error processing images: {str(e)}")
|
| 303 |
+
return ""
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class DatabaseManager:
|
| 307 |
+
"""Manages database operations."""
|
| 308 |
+
|
| 309 |
+
def __init__(self):
|
| 310 |
+
self.db_params = {
|
| 311 |
+
"dbname": "postgres",
|
| 312 |
+
"user": os.environ['SUPABASE_USER'],
|
| 313 |
+
"password": os.environ['SUPABASE_PASSWORD'],
|
| 314 |
+
"host": "aws-0-us-west-1.pooler.supabase.com",
|
| 315 |
+
"port": "5432"
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
@log_execution
|
| 319 |
+
def update_database(self, user_id: str, user_query: str, response: str) -> None:
|
| 320 |
+
with psycopg2.connect(**self.db_params) as conn:
|
| 321 |
+
with conn.cursor() as cur:
|
| 322 |
+
insert_query = """
|
| 323 |
+
INSERT INTO ai_document_generator (user_id, user_query, response)
|
| 324 |
+
VALUES (%s, %s, %s);
|
| 325 |
+
"""
|
| 326 |
+
cur.execute(insert_query, (user_id, user_query, response))
|
| 327 |
+
|
| 328 |
+
class DocumentGenerator:
|
| 329 |
+
def __init__(self, ai_client: AIClient):
|
| 330 |
+
self.ai_client = ai_client
|
| 331 |
+
self.document_outline = None
|
| 332 |
+
self.content_messages = []
|
| 333 |
+
|
| 334 |
+
@staticmethod
|
| 335 |
+
def extract_between_tags(text: str, tag: str) -> str:
|
| 336 |
+
pattern = f"<{tag}>(.*?)</{tag}>"
|
| 337 |
+
match = re.search(pattern, text, re.DOTALL)
|
| 338 |
+
return match.group(1).strip() if match else ""
|
| 339 |
+
|
| 340 |
+
@staticmethod
|
| 341 |
+
def remove_duplicate_title(content: str, title: str, section_number: str) -> str:
|
| 342 |
+
patterns = [
|
| 343 |
+
rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
|
| 344 |
+
rf"^#+\s*{re.escape(title)}",
|
| 345 |
+
rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
|
| 346 |
+
rf"^{re.escape(title)}",
|
| 347 |
+
]
|
| 348 |
+
|
| 349 |
+
for pattern in patterns:
|
| 350 |
+
content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE)
|
| 351 |
+
|
| 352 |
+
return content.lstrip()
|
| 353 |
+
|
| 354 |
+
@log_execution
|
| 355 |
+
async def generate_document_outline(self, query: str, num_pages:int, template: bool = False, image_context: str = "", max_retries: int = 3) -> Optional[Dict]:
|
| 356 |
+
pages_prompt = "" if num_pages == 0 else f"consisting of {num_pages} pages "
|
| 357 |
+
messages = [
|
| 358 |
+
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM},
|
| 359 |
+
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query, num_pages=pages_prompt) if not template else DOCUMENT_TEMPLATE_PROMPT_USER.format(query=query, num_pages=pages_prompt)}
|
| 360 |
+
]
|
| 361 |
+
# Update user content to include image context if provided
|
| 362 |
+
if image_context:
|
| 363 |
+
messages[1]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
|
| 364 |
+
|
| 365 |
+
for attempt in range(max_retries):
|
| 366 |
+
outline_response = await self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
| 367 |
+
outline_json_text = self.extract_between_tags(outline_response, "output")
|
| 368 |
+
|
| 369 |
+
try:
|
| 370 |
+
self.document_outline = json.loads(outline_json_text)
|
| 371 |
+
return self.document_outline
|
| 372 |
+
except json.JSONDecodeError as e:
|
| 373 |
+
if attempt < max_retries - 1:
|
| 374 |
+
logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}")
|
| 375 |
+
logger.info("Retrying...")
|
| 376 |
+
else:
|
| 377 |
+
logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}")
|
| 378 |
+
return None
|
| 379 |
+
|
| 380 |
+
@log_execution
|
| 381 |
+
async def generate_content(self, title: str, content_instruction: str, section_number: str, template: bool = False) -> str:
|
| 382 |
+
SECTION_PROMPT_USER = DOCUMENT_SECTION_PROMPT_USER if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_USER
|
| 383 |
+
self.content_messages.append({
|
| 384 |
+
"role": "user",
|
| 385 |
+
"content": SECTION_PROMPT_USER.format(
|
| 386 |
+
#section_or_subsection_title=title,
|
| 387 |
+
content_instruction=content_instruction
|
| 388 |
+
)
|
| 389 |
+
})
|
| 390 |
+
section_response = await self.ai_client.generate_response(self.content_messages)
|
| 391 |
+
content = self.extract_between_tags(section_response, "response")
|
| 392 |
+
content = self.remove_duplicate_title(content, title, section_number)
|
| 393 |
+
self.content_messages.append({
|
| 394 |
+
"role": "assistant",
|
| 395 |
+
"content": section_response
|
| 396 |
+
})
|
| 397 |
+
return content
|
| 398 |
+
|
| 399 |
+
class MarkdownConverter:
|
| 400 |
+
@staticmethod
|
| 401 |
+
def slugify(text: str) -> str:
|
| 402 |
+
return re.sub(r'\W+', '-', text.lower())
|
| 403 |
+
|
| 404 |
+
@classmethod
|
| 405 |
+
def convert_to_markdown(cls, document: Dict) -> str:
|
| 406 |
+
markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n"
|
| 407 |
+
markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n"
|
| 408 |
+
markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n"
|
| 409 |
+
markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n"
|
| 410 |
+
markdown += "</div>\n\n"
|
| 411 |
+
|
| 412 |
+
# Generate Table of Contents
|
| 413 |
+
markdown += "<div style='page-break-before: always;'></div>\n\n"
|
| 414 |
+
markdown += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n"
|
| 415 |
+
markdown += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n"
|
| 416 |
+
|
| 417 |
+
for section in document['Pages']:
|
| 418 |
+
section_number = section['PageNumber']
|
| 419 |
+
section_title = section['Title']
|
| 420 |
+
markdown += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n"
|
| 421 |
+
|
| 422 |
+
for subsection in section.get('Subsections', []):
|
| 423 |
+
subsection_number = subsection['PageNumber']
|
| 424 |
+
subsection_title = subsection['Title']
|
| 425 |
+
markdown += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n"
|
| 426 |
+
|
| 427 |
+
markdown += "</nav>\n\n"
|
| 428 |
+
|
| 429 |
+
# Generate Content
|
| 430 |
+
markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n"
|
| 431 |
+
|
| 432 |
+
for section in document['Pages']:
|
| 433 |
+
markdown += "<div style='page-break-before: always;'></div>\n\n"
|
| 434 |
+
section_number = section['PageNumber']
|
| 435 |
+
section_title = section['Title']
|
| 436 |
+
markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n"
|
| 437 |
+
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n"
|
| 438 |
+
|
| 439 |
+
markdown += "</div>"
|
| 440 |
+
return markdown
|
| 441 |
+
|
| 442 |
+
router = APIRouter()
|
| 443 |
+
|
| 444 |
+
class JsonDocumentResponse(BaseModel):
|
| 445 |
+
json_document: Dict
|
| 446 |
+
|
| 447 |
+
# class JsonDocumentRequest(BaseModel):
|
| 448 |
+
# query: str
|
| 449 |
+
# template: bool = False
|
| 450 |
+
# images: Optional[List[UploadFile]] = File(None)
|
| 451 |
+
# documents: Optional[List[UploadFile]] = File(None)
|
| 452 |
+
# conversation_id: str = ""
|
| 453 |
+
|
| 454 |
+
class MarkdownDocumentRequest(BaseModel):
|
| 455 |
+
json_document: Dict
|
| 456 |
+
query: str
|
| 457 |
+
template: bool = False
|
| 458 |
+
conversation_id: str = ""
|
| 459 |
+
|
| 460 |
+
MESSAGE_DELIMITER = b"\n---DELIMITER---\n"
|
| 461 |
+
|
| 462 |
+
def yield_message(message):
|
| 463 |
+
message_json = json.dumps(message, ensure_ascii=False).encode('utf-8')
|
| 464 |
+
return message_json + MESSAGE_DELIMITER
|
| 465 |
+
|
| 466 |
+
async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str, template: bool = False, conversation_id: str = ""):
|
| 467 |
+
document_generator.document_outline = document_outline
|
| 468 |
+
db_manager = DatabaseManager()
|
| 469 |
+
overall_objective = query
|
| 470 |
+
document_layout = json.dumps(document_generator.document_outline["Document"]["Pages"], indent=2)
|
| 471 |
+
cache_key = f"image_context_{conversation_id}"
|
| 472 |
+
image_context = await FastAPICache.get_backend().get(cache_key)
|
| 473 |
+
|
| 474 |
+
SECTION_PROMPT_SYSTEM = DOCUMENT_SECTION_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM
|
| 475 |
+
document_generator.content_messages = [
|
| 476 |
+
{
|
| 477 |
+
"role": "system",
|
| 478 |
+
"content": SECTION_PROMPT_SYSTEM.format(
|
| 479 |
+
overall_objective=overall_objective,
|
| 480 |
+
document_layout=document_layout
|
| 481 |
+
)
|
| 482 |
+
}
|
| 483 |
+
]
|
| 484 |
+
if image_context:
|
| 485 |
+
document_generator.content_messages[0]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
|
| 486 |
+
|
| 487 |
+
for section in document_generator.document_outline["Document"].get("Pages", []):
|
| 488 |
+
section_title = section.get("Title", "")
|
| 489 |
+
section_number = section.get("PageNumber", "")
|
| 490 |
+
content_instruction = section.get("Content", "")
|
| 491 |
+
|
| 492 |
+
section_prompt_content = f"""# {section_number} {section_title}\n\n{content_instruction}\n\n"""
|
| 493 |
+
|
| 494 |
+
for subsection in section.get("Subsections", []):
|
| 495 |
+
subsection_title = subsection.get("Title", "")
|
| 496 |
+
subsection_number = subsection.get("PageNumber", "")
|
| 497 |
+
subsection_content_instruction = subsection.get("Content", "")
|
| 498 |
+
section_prompt_content += f"""## {subsection_number} {subsection_title}\n\n{subsection_content_instruction}\n\n"""
|
| 499 |
+
|
| 500 |
+
content = await document_generator.generate_content(section_title, section_prompt_content, section_number, template)
|
| 501 |
+
section["Content"] = content
|
| 502 |
+
yield yield_message({
|
| 503 |
+
"type": "document_section",
|
| 504 |
+
"content": {
|
| 505 |
+
"section_number": section_number,
|
| 506 |
+
"section_title": section_title,
|
| 507 |
+
"content": content
|
| 508 |
+
}
|
| 509 |
+
})
|
| 510 |
+
|
| 511 |
+
markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"])
|
| 512 |
+
|
| 513 |
+
yield yield_message({
|
| 514 |
+
"type": "complete_document",
|
| 515 |
+
"content": {
|
| 516 |
+
"markdown": markdown_document,
|
| 517 |
+
"json": document_generator.document_outline
|
| 518 |
+
},
|
| 519 |
+
});
|
| 520 |
+
|
| 521 |
+
db_manager.update_database("elevatics", query, markdown_document)
|
| 522 |
+
|
| 523 |
+
@router.post("/generate-document/markdown-stream")
|
| 524 |
+
async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest):
|
| 525 |
+
ai_client = AIClient()
|
| 526 |
+
document_generator = DocumentGenerator(ai_client)
|
| 527 |
+
|
| 528 |
+
async def stream_generator():
|
| 529 |
+
try:
|
| 530 |
+
async for chunk in generate_document_stream(document_generator, request.json_document, request.query, request.template, request.conversation_id):
|
| 531 |
+
yield chunk
|
| 532 |
+
except Exception as e:
|
| 533 |
+
yield yield_message({
|
| 534 |
+
"type": "error",
|
| 535 |
+
"content": str(e)
|
| 536 |
+
})
|
| 537 |
+
|
| 538 |
+
return StreamingResponse(stream_generator(), media_type="application/octet-stream")
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
@cache(expire=600*24*7)
|
| 542 |
+
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
| 543 |
+
async def generate_document_outline_endpoint(
|
| 544 |
+
query: str = Form(...),
|
| 545 |
+
template: bool = Form(False),
|
| 546 |
+
conversation_id: str = Form(...),
|
| 547 |
+
num_pages:int = Form(...),
|
| 548 |
+
images: Optional[List[UploadFile]] = File(None),
|
| 549 |
+
documents: Optional[List[UploadFile]] = File(None)
|
| 550 |
+
):
|
| 551 |
+
ai_client = AIClient()
|
| 552 |
+
document_generator = DocumentGenerator(ai_client)
|
| 553 |
+
vision_tools = VisionTools(ai_client)
|
| 554 |
+
try:
|
| 555 |
+
image_context = ""
|
| 556 |
+
if images:
|
| 557 |
+
image_context = await vision_tools.extract_images_info(images)
|
| 558 |
+
|
| 559 |
+
# Store the image_context in the cache
|
| 560 |
+
cache_key = f"image_context_{conversation_id}"
|
| 561 |
+
await FastAPICache.get_backend().set(cache_key, image_context, expire=3600) # Cache for 1 hour
|
| 562 |
+
|
| 563 |
+
json_document = await document_generator.generate_document_outline(
|
| 564 |
+
query,
|
| 565 |
+
num_pages,
|
| 566 |
+
template,
|
| 567 |
+
image_context=image_context
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
if json_document is None:
|
| 571 |
+
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
| 572 |
+
|
| 573 |
+
return JsonDocumentResponse(json_document=json_document)
|
| 574 |
+
except Exception as e:
|
| 575 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
## OBSERVABILITY
|
| 580 |
+
from uuid import uuid4
|
| 581 |
+
import csv
|
| 582 |
+
from io import StringIO
|
| 583 |
+
|
| 584 |
+
class ObservationResponse(BaseModel):
|
| 585 |
+
observations: List[Dict]
|
| 586 |
+
|
| 587 |
+
def create_csv_response(observations: List[Dict]) -> StreamingResponse:
|
| 588 |
+
def iter_csv(data):
|
| 589 |
+
output = StringIO()
|
| 590 |
+
writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else [])
|
| 591 |
+
writer.writeheader()
|
| 592 |
+
for row in data:
|
| 593 |
+
writer.writerow(row)
|
| 594 |
+
output.seek(0)
|
| 595 |
+
yield output.read()
|
| 596 |
+
|
| 597 |
+
headers = {
|
| 598 |
+
'Content-Disposition': 'attachment; filename="observations.csv"'
|
| 599 |
+
}
|
| 600 |
+
return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers)
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
@router.get("/last-observations/{limit}")
|
| 604 |
+
async def get_last_observations(limit: int = 10, format: str = "json"):
|
| 605 |
+
observability_manager = LLMObservabilityManager()
|
| 606 |
+
|
| 607 |
+
try:
|
| 608 |
+
# Get all observations, sorted by created_at in descending order
|
| 609 |
+
all_observations = observability_manager.get_observations()
|
| 610 |
+
all_observations.sort(key=lambda x: x['created_at'], reverse=True)
|
| 611 |
+
|
| 612 |
+
# Get the last conversation_id
|
| 613 |
+
if all_observations:
|
| 614 |
+
last_conversation_id = all_observations[0]['conversation_id']
|
| 615 |
+
|
| 616 |
+
# Filter observations for the last conversation
|
| 617 |
+
last_conversation_observations = [
|
| 618 |
+
obs for obs in all_observations
|
| 619 |
+
if obs['conversation_id'] == last_conversation_id
|
| 620 |
+
][:limit]
|
| 621 |
+
|
| 622 |
+
if format.lower() == "csv":
|
| 623 |
+
return create_csv_response(last_conversation_observations)
|
| 624 |
+
else:
|
| 625 |
+
return ObservationResponse(observations=last_conversation_observations)
|
| 626 |
+
else:
|
| 627 |
+
if format.lower() == "csv":
|
| 628 |
+
return create_csv_response([])
|
| 629 |
+
else:
|
| 630 |
+
return ObservationResponse(observations=[])
|
| 631 |
+
except Exception as e:
|
| 632 |
+
raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}")
|
| 633 |
+
|
| 634 |
+
## TEST CACHE
|
| 635 |
+
|
| 636 |
+
class CacheItem(BaseModel):
|
| 637 |
+
key: str
|
| 638 |
+
value: str
|
| 639 |
+
|
| 640 |
+
@router.post("/set-cache")
|
| 641 |
+
async def set_cache(item: CacheItem):
|
| 642 |
+
try:
|
| 643 |
+
# Set the cache with a default expiration of 1 hour (3600 seconds)
|
| 644 |
+
await FastAPICache.get_backend().set(item.key, item.value, expire=3600)
|
| 645 |
+
return {"message": f"Cache set for key: {item.key}"}
|
| 646 |
+
except Exception as e:
|
| 647 |
+
raise HTTPException(status_code=500, detail=f"Failed to set cache: {str(e)}")
|
| 648 |
+
|
| 649 |
+
@router.get("/get-cache/{key}")
|
| 650 |
+
async def get_cache(key: str):
|
| 651 |
+
try:
|
| 652 |
+
value = await FastAPICache.get_backend().get(key)
|
| 653 |
+
if value is None:
|
| 654 |
+
raise HTTPException(status_code=404, detail=f"No cache found for key: {key}")
|
| 655 |
+
return {"key": key, "value": value}
|
| 656 |
+
except Exception as e:
|
| 657 |
+
raise HTTPException(status_code=500, detail=f"Failed to get cache: {str(e)}")
|