Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,16 +1,22 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException, Depends, Security
|
| 2 |
from fastapi.security import APIKeyHeader
|
| 3 |
from fastapi.responses import StreamingResponse
|
| 4 |
from pydantic import BaseModel, Field
|
| 5 |
-
from typing import Literal
|
| 6 |
import os
|
| 7 |
from functools import lru_cache
|
| 8 |
from openai import OpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
API_KEY_NAME = "X-API-Key"
|
| 13 |
-
API_KEY = os.environ.get("API_KEY", "default_secret_key")
|
| 14 |
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
|
| 15 |
|
| 16 |
ModelID = Literal[
|
|
@@ -29,12 +35,16 @@ class QueryModel(BaseModel):
|
|
| 29 |
default="meta-llama/llama-3-70b-instruct",
|
| 30 |
description="ID of the model to use for response generation"
|
| 31 |
)
|
|
|
|
|
|
|
| 32 |
|
| 33 |
class Config:
|
| 34 |
schema_extra = {
|
| 35 |
"example": {
|
| 36 |
"user_query": "How do I implement a binary search in Python?",
|
| 37 |
-
"model_id": "meta-llama/llama-3-70b-instruct"
|
|
|
|
|
|
|
| 38 |
}
|
| 39 |
}
|
| 40 |
|
|
@@ -47,7 +57,28 @@ def get_api_keys():
|
|
| 47 |
api_keys = get_api_keys()
|
| 48 |
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
try:
|
| 52 |
response = or_client.chat.completions.create(
|
| 53 |
model=model,
|
|
@@ -56,9 +87,16 @@ def chat_with_llama_stream(messages, model, max_output_tokens=2500):
|
|
| 56 |
stream=True
|
| 57 |
)
|
| 58 |
|
|
|
|
| 59 |
for chunk in response:
|
| 60 |
if chunk.choices[0].delta.content is not None:
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
|
| 64 |
|
|
@@ -67,8 +105,48 @@ async def verify_api_key(api_key: str = Security(api_key_header)):
|
|
| 67 |
raise HTTPException(status_code=403, detail="Could not validate credentials")
|
| 68 |
return api_key
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
@app.post("/coding-assistant")
|
| 71 |
-
async def coding_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
|
| 72 |
"""
|
| 73 |
Coding assistant endpoint that provides programming help based on user queries.
|
| 74 |
|
|
@@ -83,16 +161,31 @@ async def coding_assistant(query: QueryModel, api_key: str = Depends(verify_api_
|
|
| 83 |
|
| 84 |
Requires API Key authentication via X-API-Key header.
|
| 85 |
"""
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
if __name__ == "__main__":
|
| 98 |
import uvicorn
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
|
| 2 |
from fastapi.security import APIKeyHeader
|
| 3 |
from fastapi.responses import StreamingResponse
|
| 4 |
from pydantic import BaseModel, Field
|
| 5 |
+
from typing import Literal, List, Dict
|
| 6 |
import os
|
| 7 |
from functools import lru_cache
|
| 8 |
from openai import OpenAI
|
| 9 |
+
from uuid import uuid4
|
| 10 |
+
import tiktoken
|
| 11 |
+
import sqlite3
|
| 12 |
+
import time
|
| 13 |
+
from datetime import datetime, timedelta
|
| 14 |
+
import asyncio
|
| 15 |
|
| 16 |
app = FastAPI()
|
| 17 |
|
| 18 |
API_KEY_NAME = "X-API-Key"
|
| 19 |
+
API_KEY = os.environ.get("API_KEY", "default_secret_key")
|
| 20 |
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
|
| 21 |
|
| 22 |
ModelID = Literal[
|
|
|
|
| 35 |
default="meta-llama/llama-3-70b-instruct",
|
| 36 |
description="ID of the model to use for response generation"
|
| 37 |
)
|
| 38 |
+
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
|
| 39 |
+
user_id: str = Field(..., description="Unique identifier for the user")
|
| 40 |
|
| 41 |
class Config:
|
| 42 |
schema_extra = {
|
| 43 |
"example": {
|
| 44 |
"user_query": "How do I implement a binary search in Python?",
|
| 45 |
+
"model_id": "meta-llama/llama-3-70b-instruct",
|
| 46 |
+
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
|
| 47 |
+
"user_id": "user123"
|
| 48 |
}
|
| 49 |
}
|
| 50 |
|
|
|
|
| 57 |
api_keys = get_api_keys()
|
| 58 |
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
|
| 59 |
|
| 60 |
+
# In-memory storage for conversations
|
| 61 |
+
conversations: Dict[str, List[Dict[str, str]]] = {}
|
| 62 |
+
last_activity: Dict[str, float] = {}
|
| 63 |
+
|
| 64 |
+
# Token encoding
|
| 65 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
| 66 |
+
|
| 67 |
+
def limit_tokens(input_string, token_limit=6000):
|
| 68 |
+
return encoding.decode(encoding.encode(input_string)[:token_limit])
|
| 69 |
+
|
| 70 |
+
def calculate_tokens(msgs):
|
| 71 |
+
return sum(len(encoding.encode(str(m))) for m in msgs)
|
| 72 |
+
|
| 73 |
+
def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500):
|
| 74 |
+
while calculate_tokens(messages) > (8000 - max_output_tokens):
|
| 75 |
+
if len(messages) > max_llm_history:
|
| 76 |
+
messages = [messages[0]] + messages[-max_llm_history:]
|
| 77 |
+
else:
|
| 78 |
+
max_llm_history -= 1
|
| 79 |
+
if max_llm_history < 2:
|
| 80 |
+
raise ValueError("Unable to reduce message length below token limit")
|
| 81 |
+
|
| 82 |
try:
|
| 83 |
response = or_client.chat.completions.create(
|
| 84 |
model=model,
|
|
|
|
| 87 |
stream=True
|
| 88 |
)
|
| 89 |
|
| 90 |
+
full_response = ""
|
| 91 |
for chunk in response:
|
| 92 |
if chunk.choices[0].delta.content is not None:
|
| 93 |
+
content = chunk.choices[0].delta.content
|
| 94 |
+
full_response += content
|
| 95 |
+
yield content
|
| 96 |
+
|
| 97 |
+
# After streaming, add the full response to the conversation history
|
| 98 |
+
messages.append({"role": "assistant", "content": full_response})
|
| 99 |
+
return full_response
|
| 100 |
except Exception as e:
|
| 101 |
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
|
| 102 |
|
|
|
|
| 105 |
raise HTTPException(status_code=403, detail="Could not validate credentials")
|
| 106 |
return api_key
|
| 107 |
|
| 108 |
+
# SQLite setup
|
| 109 |
+
def init_db():
|
| 110 |
+
conn = sqlite3.connect('conversations.db')
|
| 111 |
+
c = conn.cursor()
|
| 112 |
+
c.execute('''CREATE TABLE IF NOT EXISTS conversations
|
| 113 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 114 |
+
user_id TEXT,
|
| 115 |
+
conversation_id TEXT,
|
| 116 |
+
message TEXT,
|
| 117 |
+
response TEXT,
|
| 118 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
| 119 |
+
conn.commit()
|
| 120 |
+
conn.close()
|
| 121 |
+
|
| 122 |
+
init_db()
|
| 123 |
+
|
| 124 |
+
def update_db(user_id, conversation_id, message, response):
|
| 125 |
+
conn = sqlite3.connect('conversations.db')
|
| 126 |
+
c = conn.cursor()
|
| 127 |
+
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
|
| 128 |
+
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
|
| 129 |
+
conn.commit()
|
| 130 |
+
conn.close()
|
| 131 |
+
|
| 132 |
+
async def clear_inactive_conversations():
|
| 133 |
+
while True:
|
| 134 |
+
current_time = time.time()
|
| 135 |
+
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
|
| 136 |
+
if current_time - last_time > 1800] # 30 minutes
|
| 137 |
+
for conv_id in inactive_convos:
|
| 138 |
+
if conv_id in conversations:
|
| 139 |
+
del conversations[conv_id]
|
| 140 |
+
if conv_id in last_activity:
|
| 141 |
+
del last_activity[conv_id]
|
| 142 |
+
await asyncio.sleep(60) # Check every minute
|
| 143 |
+
|
| 144 |
+
@app.on_event("startup")
|
| 145 |
+
async def startup_event():
|
| 146 |
+
asyncio.create_task(clear_inactive_conversations())
|
| 147 |
+
|
| 148 |
@app.post("/coding-assistant")
|
| 149 |
+
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 150 |
"""
|
| 151 |
Coding assistant endpoint that provides programming help based on user queries.
|
| 152 |
|
|
|
|
| 161 |
|
| 162 |
Requires API Key authentication via X-API-Key header.
|
| 163 |
"""
|
| 164 |
+
if query.conversation_id not in conversations:
|
| 165 |
+
conversations[query.conversation_id] = [
|
| 166 |
+
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
|
| 170 |
+
last_activity[query.conversation_id] = time.time()
|
| 171 |
+
|
| 172 |
+
# Limit tokens in the conversation history
|
| 173 |
+
limited_conversation = conversations[query.conversation_id]
|
| 174 |
+
while calculate_tokens(limited_conversation) > 8000:
|
| 175 |
+
if len(limited_conversation) > 2: # Keep at least the system message and the latest user message
|
| 176 |
+
limited_conversation.pop(1)
|
| 177 |
+
else:
|
| 178 |
+
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
|
| 179 |
+
raise HTTPException(status_code=400, detail=error_message)
|
| 180 |
+
|
| 181 |
+
async def process_response():
|
| 182 |
+
full_response = ""
|
| 183 |
+
async for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 184 |
+
full_response += content
|
| 185 |
+
yield content
|
| 186 |
+
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
|
| 187 |
+
|
| 188 |
+
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 189 |
|
| 190 |
if __name__ == "__main__":
|
| 191 |
import uvicorn
|