Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,808 +1,205 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
|
| 2 |
-
from fastapi.security import APIKeyHeader
|
| 3 |
-
from fastapi.responses import StreamingResponse
|
| 4 |
-
from pydantic import BaseModel, Field
|
| 5 |
-
from typing import Literal, List, Dict
|
| 6 |
import os
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
from uuid import uuid4
|
| 10 |
-
import tiktoken
|
| 11 |
-
import sqlite3
|
| 12 |
-
import time
|
| 13 |
-
from datetime import datetime, timedelta
|
| 14 |
-
import asyncio
|
| 15 |
-
import requests
|
| 16 |
-
from prompts import *
|
| 17 |
-
from fastapi_cache import FastAPICache
|
| 18 |
-
from fastapi_cache.backends.inmemory import InMemoryBackend
|
| 19 |
-
from fastapi_cache.decorator import cache
|
| 20 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Configure logging
|
| 23 |
logging.basicConfig(
|
| 24 |
level=logging.INFO,
|
| 25 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 26 |
-
handlers=[
|
| 27 |
-
logging.FileHandler("app.log"),
|
| 28 |
-
logging.StreamHandler()
|
| 29 |
-
]
|
| 30 |
)
|
| 31 |
logger = logging.getLogger(__name__)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
API_KEY_NAME = "X-API-Key"
|
| 36 |
-
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
|
| 37 |
-
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
|
| 38 |
-
|
| 39 |
-
from speech_api import router as speech_api_router
|
| 40 |
-
app.include_router(speech_api_router, prefix="/api/v1", tags=["TTS and ASR"])
|
| 41 |
-
|
| 42 |
-
ModelID = Literal[
|
| 43 |
-
"openai/gpt-4o-mini",
|
| 44 |
-
"meta-llama/llama-3-70b-instruct",
|
| 45 |
-
"anthropic/claude-3.5-sonnet",
|
| 46 |
-
"deepseek/deepseek-coder",
|
| 47 |
-
"anthropic/claude-3-haiku",
|
| 48 |
-
"openai/gpt-3.5-turbo-instruct",
|
| 49 |
-
"qwen/qwen-72b-chat",
|
| 50 |
-
"google/gemma-2-27b-it"
|
| 51 |
-
]
|
| 52 |
-
|
| 53 |
-
class QueryModel(BaseModel):
|
| 54 |
-
user_query: str = Field(..., description="User's coding query")
|
| 55 |
-
model_id: ModelID = Field(
|
| 56 |
-
default="meta-llama/llama-3-70b-instruct",
|
| 57 |
-
description="ID of the model to use for response generation"
|
| 58 |
-
)
|
| 59 |
-
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
|
| 60 |
-
user_id: str = Field(..., description="Unique identifier for the user")
|
| 61 |
-
|
| 62 |
-
class Config:
|
| 63 |
-
schema_extra = {
|
| 64 |
-
"example": {
|
| 65 |
-
"user_query": "How do I implement a binary search in Python?",
|
| 66 |
-
"model_id": "meta-llama/llama-3-70b-instruct",
|
| 67 |
-
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
|
| 68 |
-
"user_id": "user123"
|
| 69 |
-
}
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
class NewsQueryModel(BaseModel):
|
| 73 |
-
query: str = Field(..., description="News topic to search for")
|
| 74 |
-
model_id: ModelID = Field(
|
| 75 |
-
default="openai/gpt-4o-mini",
|
| 76 |
-
description="ID of the model to use for response generation"
|
| 77 |
-
)
|
| 78 |
-
class Config:
|
| 79 |
-
schema_extra = {
|
| 80 |
-
"example": {
|
| 81 |
-
"query": "Latest developments in AI",
|
| 82 |
-
"model_id": "openai/gpt-4o-mini"
|
| 83 |
-
}
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
@lru_cache()
|
| 87 |
-
def get_api_keys():
|
| 88 |
-
logger.info("Loading API keys")
|
| 89 |
-
return {
|
| 90 |
-
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
|
| 91 |
-
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
api_keys = get_api_keys()
|
| 95 |
-
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
|
| 96 |
-
|
| 97 |
-
# In-memory storage for conversations
|
| 98 |
-
conversations: Dict[str, List[Dict[str, str]]] = {}
|
| 99 |
-
last_activity: Dict[str, float] = {}
|
| 100 |
-
|
| 101 |
-
# Token encoding
|
| 102 |
-
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
| 103 |
-
|
| 104 |
-
def limit_tokens(input_string, token_limit=6000):
|
| 105 |
-
return encoding.decode(encoding.encode(input_string)[:token_limit])
|
| 106 |
-
|
| 107 |
-
def calculate_tokens(msgs):
|
| 108 |
-
return sum(len(encoding.encode(str(m))) for m in msgs)
|
| 109 |
-
|
| 110 |
-
def chat_with_llama_stream(messages, model="openai/gpt-4o-mini", max_llm_history=4, max_output_tokens=2500):
|
| 111 |
-
logger.info(f"Starting chat with model: {model}")
|
| 112 |
-
while calculate_tokens(messages) > (8000 - max_output_tokens):
|
| 113 |
-
if len(messages) > max_llm_history:
|
| 114 |
-
messages = [messages[0]] + messages[-max_llm_history:]
|
| 115 |
-
else:
|
| 116 |
-
max_llm_history -= 1
|
| 117 |
-
if max_llm_history < 2:
|
| 118 |
-
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
|
| 119 |
-
logger.error(error_message)
|
| 120 |
-
raise HTTPException(status_code=400, detail=error_message)
|
| 121 |
-
|
| 122 |
-
try:
|
| 123 |
-
response = or_client.chat.completions.create(
|
| 124 |
-
model=model,
|
| 125 |
-
messages=messages,
|
| 126 |
-
max_tokens=max_output_tokens,
|
| 127 |
-
stream=True
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
full_response = ""
|
| 131 |
-
for chunk in response:
|
| 132 |
-
if chunk.choices[0].delta.content is not None:
|
| 133 |
-
content = chunk.choices[0].delta.content
|
| 134 |
-
full_response += content
|
| 135 |
-
yield content
|
| 136 |
-
|
| 137 |
-
# After streaming, add the full response to the conversation history
|
| 138 |
-
messages.append({"role": "assistant", "content": full_response})
|
| 139 |
-
logger.info("Chat completed successfully")
|
| 140 |
-
except Exception as e:
|
| 141 |
-
logger.error(f"Error in model response: {str(e)}")
|
| 142 |
-
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
|
| 143 |
-
|
| 144 |
-
async def verify_api_key(api_key: str = Security(api_key_header)):
|
| 145 |
-
if api_key != API_KEY:
|
| 146 |
-
logger.warning("Invalid API key used")
|
| 147 |
-
raise HTTPException(status_code=403, detail="Could not validate credentials")
|
| 148 |
-
return api_key
|
| 149 |
-
|
| 150 |
-
# SQLite setup
|
| 151 |
-
DB_PATH = '/app/data/conversations.db'
|
| 152 |
-
|
| 153 |
-
def init_db():
|
| 154 |
-
logger.info("Initializing database")
|
| 155 |
-
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
|
| 156 |
-
conn = sqlite3.connect(DB_PATH)
|
| 157 |
-
c = conn.cursor()
|
| 158 |
-
c.execute('''CREATE TABLE IF NOT EXISTS conversations
|
| 159 |
-
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 160 |
-
user_id TEXT,
|
| 161 |
-
conversation_id TEXT,
|
| 162 |
-
message TEXT,
|
| 163 |
-
response TEXT,
|
| 164 |
-
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
| 165 |
-
conn.commit()
|
| 166 |
-
conn.close()
|
| 167 |
-
logger.info("Database initialized successfully")
|
| 168 |
-
|
| 169 |
-
init_db()
|
| 170 |
-
|
| 171 |
-
def update_db(user_id, conversation_id, message, response):
|
| 172 |
-
logger.info(f"Updating database for conversation: {conversation_id}")
|
| 173 |
-
conn = sqlite3.connect(DB_PATH)
|
| 174 |
-
c = conn.cursor()
|
| 175 |
-
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
|
| 176 |
-
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
|
| 177 |
-
conn.commit()
|
| 178 |
-
conn.close()
|
| 179 |
-
logger.info("Database updated successfully")
|
| 180 |
-
|
| 181 |
-
async def clear_inactive_conversations():
|
| 182 |
-
while True:
|
| 183 |
-
|
| 184 |
-
current_time = time.time()
|
| 185 |
-
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
|
| 186 |
-
if current_time - last_time > 1800] # 30 minutes
|
| 187 |
-
for conv_id in inactive_convos:
|
| 188 |
-
if conv_id in conversations:
|
| 189 |
-
del conversations[conv_id]
|
| 190 |
-
if conv_id in last_activity:
|
| 191 |
-
del last_activity[conv_id]
|
| 192 |
-
await asyncio.sleep(60) # Check every minute
|
| 193 |
-
|
| 194 |
-
@app.on_event("startup")
|
| 195 |
-
async def startup_event():
|
| 196 |
-
logger.info("Starting up the application")
|
| 197 |
-
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
|
| 198 |
-
asyncio.create_task(clear_inactive_conversations())
|
| 199 |
-
|
| 200 |
-
@app.post("/coding-assistant")
|
| 201 |
-
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 202 |
-
"""
|
| 203 |
-
Coding assistant endpoint that provides programming help based on user queries.
|
| 204 |
-
Available models:
|
| 205 |
-
- meta-llama/llama-3-70b-instruct (default)
|
| 206 |
-
- anthropic/claude-3.5-sonnet
|
| 207 |
-
- deepseek/deepseek-coder
|
| 208 |
-
- anthropic/claude-3-haiku
|
| 209 |
-
- openai/gpt-3.5-turbo-instruct
|
| 210 |
-
- qwen/qwen-72b-chat
|
| 211 |
-
- google/gemma-2-27b-it
|
| 212 |
-
- openai/gpt-4o-mini
|
| 213 |
-
Requires API Key authentication via X-API-Key header.
|
| 214 |
-
"""
|
| 215 |
-
logger.info(f"Received coding assistant query: {query.user_query}")
|
| 216 |
-
if query.conversation_id not in conversations:
|
| 217 |
-
conversations[query.conversation_id] = [
|
| 218 |
-
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
|
| 219 |
-
]
|
| 220 |
-
|
| 221 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
|
| 222 |
-
last_activity[query.conversation_id] = time.time()
|
| 223 |
-
|
| 224 |
-
# Limit tokens in the conversation history
|
| 225 |
-
limited_conversation = conversations[query.conversation_id]
|
| 226 |
-
|
| 227 |
-
def process_response():
|
| 228 |
-
full_response = ""
|
| 229 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 230 |
-
full_response += content
|
| 231 |
-
yield content
|
| 232 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
|
| 233 |
-
logger.info(f"Completed coding assistant response for query: {query.user_query}")
|
| 234 |
-
|
| 235 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 236 |
-
|
| 237 |
-
# New functions for news assistant
|
| 238 |
-
|
| 239 |
-
def internet_search(query, search_type="web", num_results=20):
|
| 240 |
-
logger.info(f"Performing internet search for query: {query}, type: {search_type}")
|
| 241 |
-
url = f"https://api.search.brave.com/res/v1/{'web' if search_type == 'web' else 'news'}/search"
|
| 242 |
-
|
| 243 |
-
headers = {
|
| 244 |
-
"Accept": "application/json",
|
| 245 |
-
"Accept-Encoding": "gzip",
|
| 246 |
-
"X-Subscription-Token": api_keys["BRAVE_API_KEY"]
|
| 247 |
-
}
|
| 248 |
-
params = {"q": query}
|
| 249 |
-
|
| 250 |
-
response = requests.get(url, headers=headers, params=params)
|
| 251 |
-
|
| 252 |
-
if response.status_code != 200:
|
| 253 |
-
logger.error(f"Failed to fetch search results. Status code: {response.status_code}")
|
| 254 |
-
return []
|
| 255 |
-
|
| 256 |
-
search_data = response.json()["web"]["results"] if search_type == "web" else response.json()["results"]
|
| 257 |
-
|
| 258 |
-
processed_results = [
|
| 259 |
-
{
|
| 260 |
-
"title": item["title"],
|
| 261 |
-
"snippet": item["extra_snippets"][0],
|
| 262 |
-
"last_updated": item.get("age", ""),
|
| 263 |
-
"url":item.get("url", "")
|
| 264 |
-
}
|
| 265 |
-
for item in search_data
|
| 266 |
-
if item.get("extra_snippets")
|
| 267 |
-
][:num_results]
|
| 268 |
-
|
| 269 |
-
logger.info(f"Retrieved {len(processed_results)} search results")
|
| 270 |
-
return processed_results
|
| 271 |
-
|
| 272 |
-
@lru_cache(maxsize=100)
|
| 273 |
-
def cached_internet_search(query: str):
|
| 274 |
-
logger.info(f"Performing cached internet search for query: {query}")
|
| 275 |
-
return internet_search(query, search_type="news")
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
data = internet_search(query, search_type="web")
|
| 286 |
-
prompt_generator = generate_search_prompt
|
| 287 |
-
system_prompt = SEARCH_ASSISTANT_PROMPT
|
| 288 |
-
|
| 289 |
-
if not data:
|
| 290 |
-
logger.error(f"Failed to fetch {data_type} data")
|
| 291 |
-
return None
|
| 292 |
-
|
| 293 |
-
prompt = prompt_generator(query, data)
|
| 294 |
-
messages = [
|
| 295 |
-
{"role": "system", "content": system_prompt},
|
| 296 |
-
{"role": "user", "content": prompt}
|
| 297 |
-
]
|
| 298 |
-
|
| 299 |
-
logger.info(f"{data_type.capitalize()} analysis completed")
|
| 300 |
-
return messages,data
|
| 301 |
-
|
| 302 |
-
class QueryModel(BaseModel):
|
| 303 |
-
query: str = Field(..., description="Search query")
|
| 304 |
-
model_id: ModelID = Field(
|
| 305 |
-
default="openai/gpt-4o-mini",
|
| 306 |
-
description="ID of the model to use for response generation"
|
| 307 |
-
)
|
| 308 |
-
class Config:
|
| 309 |
-
schema_extra = {
|
| 310 |
-
"example": {
|
| 311 |
-
"query": "What are the latest advancements in quantum computing?",
|
| 312 |
-
"model_id": "meta-llama/llama-3-70b-instruct"
|
| 313 |
-
}
|
| 314 |
-
}
|
| 315 |
-
|
| 316 |
-
def search_assistant_api(query, data_type, model="openai/gpt-4o-mini"):
|
| 317 |
-
logger.info(f"Received {data_type} assistant query: {query}")
|
| 318 |
-
messages, search_data = analyze_data(query, data_type)
|
| 319 |
-
|
| 320 |
-
if not messages:
|
| 321 |
-
logger.error(f"Failed to fetch {data_type} data")
|
| 322 |
-
raise HTTPException(status_code=500, detail=f"Failed to fetch {data_type} data")
|
| 323 |
-
|
| 324 |
-
def process_response():
|
| 325 |
-
logger.info(f"Generating response using LLM: {messages}")
|
| 326 |
-
full_response = ""
|
| 327 |
-
for content in chat_with_llama_stream(messages, model=model):
|
| 328 |
-
full_response += content
|
| 329 |
-
yield content
|
| 330 |
-
logger.info(f"Completed {data_type} assistant response for query: {query}")
|
| 331 |
-
logger.info(f"LLM Response: {full_response}")
|
| 332 |
-
yield "<json><ref>"+ json.dumps(search_data)+"</ref></json>"
|
| 333 |
-
return process_response
|
| 334 |
-
|
| 335 |
-
def create_streaming_response(generator):
|
| 336 |
-
return StreamingResponse(generator(), media_type="text/event-stream")
|
| 337 |
-
|
| 338 |
-
@app.post("/news-assistant")
|
| 339 |
-
async def news_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
|
| 340 |
-
"""
|
| 341 |
-
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
|
| 342 |
-
Requires API Key authentication via X-API-Key header.
|
| 343 |
-
"""
|
| 344 |
-
response_generator = search_assistant_api(query.query, "news", model=query.model_id)
|
| 345 |
-
return create_streaming_response(response_generator)
|
| 346 |
-
|
| 347 |
-
@app.post("/search-assistant")
|
| 348 |
-
async def search_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
|
| 349 |
-
"""
|
| 350 |
-
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
|
| 351 |
-
Requires API Key authentication via X-API-Key header.
|
| 352 |
-
"""
|
| 353 |
-
response_generator = search_assistant_api(query.query, "web", model=query.model_id)
|
| 354 |
-
return create_streaming_response(response_generator)
|
| 355 |
-
|
| 356 |
-
from pydantic import BaseModel, Field
|
| 357 |
-
import yaml
|
| 358 |
-
import json
|
| 359 |
-
from yaml.loader import SafeLoader
|
| 360 |
-
|
| 361 |
-
class FollowupQueryModel(BaseModel):
|
| 362 |
-
query: str = Field(..., description="User's query for the followup agent")
|
| 363 |
-
model_id: ModelID = Field(
|
| 364 |
-
default="openai/gpt-4o-mini",
|
| 365 |
-
description="ID of the model to use for response generation"
|
| 366 |
-
)
|
| 367 |
-
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
|
| 368 |
-
user_id: str = Field(..., description="Unique identifier for the user")
|
| 369 |
-
tool_call: Literal["web", "news", "auto"] = Field(
|
| 370 |
-
default="auto",
|
| 371 |
-
description="Type of tool to call (web, news, auto)"
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
class Config:
|
| 375 |
-
schema_extra = {
|
| 376 |
-
"example": {
|
| 377 |
-
"query": "How can I improve my productivity?",
|
| 378 |
-
"model_id": "openai/gpt-4o-mini",
|
| 379 |
-
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
|
| 380 |
-
"user_id": "user123",
|
| 381 |
-
"tool_call": "auto"
|
| 382 |
-
}
|
| 383 |
-
}
|
| 384 |
-
|
| 385 |
-
import re
|
| 386 |
-
|
| 387 |
-
def parse_followup_and_tools(input_text):
|
| 388 |
-
# Remove extra brackets and excess quotes
|
| 389 |
-
cleaned_text = re.sub(r'\[|\]|"+', ' ', input_text)
|
| 390 |
-
|
| 391 |
-
# Extract response content
|
| 392 |
-
response_pattern = re.compile(r'<response>(.*?)</response>', re.DOTALL)
|
| 393 |
-
response_parts = response_pattern.findall(cleaned_text)
|
| 394 |
-
combined_response = ' '.join(response_parts)
|
| 395 |
-
|
| 396 |
-
# Normalize spaces in the combined response
|
| 397 |
-
combined_response = ' '.join(combined_response.split())
|
| 398 |
-
|
| 399 |
-
parsed_interacts = []
|
| 400 |
-
parsed_tools = []
|
| 401 |
-
|
| 402 |
-
# Parse interacts and tools
|
| 403 |
-
blocks = re.finditer(r'<(interact|tools?)(.*?)>(.*?)</\1>', cleaned_text, re.DOTALL)
|
| 404 |
-
for block in blocks:
|
| 405 |
-
block_type, _, content = block.groups()
|
| 406 |
-
content = content.strip()
|
| 407 |
-
|
| 408 |
-
if block_type == 'interact':
|
| 409 |
-
question_blocks = re.split(r'\s*-\s*text:', content)[1:]
|
| 410 |
-
for qblock in question_blocks:
|
| 411 |
-
parts = re.split(r'\s*options:\s*', qblock, maxsplit=1)
|
| 412 |
-
if len(parts) == 2:
|
| 413 |
-
question = ' '.join(parts[0].split()) # Normalize spaces
|
| 414 |
-
options = [' '.join(opt.split()) for opt in re.split(r'\s*-\s*', parts[1]) if opt.strip()]
|
| 415 |
-
parsed_interacts.append({'question': question, 'options': options})
|
| 416 |
-
|
| 417 |
-
elif block_type.startswith('tool'): # This will match both 'tool' and 'tools'
|
| 418 |
-
tool_match = re.search(r'text:\s*(.*?)\s*options:\s*-\s*(.*)', content, re.DOTALL)
|
| 419 |
-
if tool_match:
|
| 420 |
-
tool_name = ' '.join(tool_match.group(1).split()) # Normalize spaces
|
| 421 |
-
option = ' '.join(tool_match.group(2).split()) # Normalize spaces
|
| 422 |
-
parsed_tools.append({'name': tool_name, 'input': option})
|
| 423 |
-
|
| 424 |
-
return combined_response, parsed_interacts, parsed_tools
|
| 425 |
-
|
| 426 |
-
@app.post("/followup-agent")
|
| 427 |
-
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 428 |
-
"""
|
| 429 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
| 430 |
-
Requires API Key authentication via X-API-Key header.
|
| 431 |
-
"""
|
| 432 |
-
logger.info(f"Received followup agent query: {query.query}")
|
| 433 |
-
|
| 434 |
-
if query.conversation_id not in conversations:
|
| 435 |
-
conversations[query.conversation_id] = [
|
| 436 |
-
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
|
| 437 |
-
]
|
| 438 |
-
|
| 439 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
| 440 |
-
last_activity[query.conversation_id] = time.time()
|
| 441 |
-
|
| 442 |
-
# Limit tokens in the conversation history
|
| 443 |
-
limited_conversation = conversations[query.conversation_id]
|
| 444 |
-
|
| 445 |
-
def process_response():
|
| 446 |
-
full_response = ""
|
| 447 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 448 |
-
full_response += content
|
| 449 |
-
yield content
|
| 450 |
-
|
| 451 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
| 452 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
| 453 |
-
|
| 454 |
-
result = {
|
| 455 |
-
"response": response_content,
|
| 456 |
-
"clarification": interact
|
| 457 |
-
}
|
| 458 |
-
|
| 459 |
-
yield "\n\n" + json.dumps(result)
|
| 460 |
-
|
| 461 |
-
# Add the assistant's response to the conversation history
|
| 462 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
| 463 |
-
|
| 464 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
| 465 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
| 466 |
-
|
| 467 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 468 |
-
|
| 469 |
-
@app.post("/v2/followup-agent")
|
| 470 |
-
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 471 |
-
"""
|
| 472 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
| 473 |
-
Requires API Key authentication via X-API-Key header.
|
| 474 |
-
"""
|
| 475 |
-
logger.info(f"Received followup agent query: {query.query}")
|
| 476 |
-
|
| 477 |
-
if query.conversation_id not in conversations:
|
| 478 |
-
conversations[query.conversation_id] = [
|
| 479 |
-
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
|
| 480 |
-
]
|
| 481 |
-
|
| 482 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
| 483 |
-
last_activity[query.conversation_id] = time.time()
|
| 484 |
-
|
| 485 |
-
# Limit tokens in the conversation history
|
| 486 |
-
limited_conversation = conversations[query.conversation_id]
|
| 487 |
-
|
| 488 |
-
def process_response():
|
| 489 |
-
full_response = ""
|
| 490 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 491 |
-
full_response += content
|
| 492 |
-
yield content
|
| 493 |
-
|
| 494 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
| 495 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
| 496 |
-
|
| 497 |
-
result = {
|
| 498 |
-
"clarification": interact
|
| 499 |
-
}
|
| 500 |
-
|
| 501 |
-
yield "\n<json>"
|
| 502 |
-
yield json.dumps(result)
|
| 503 |
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
| 509 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
|
| 553 |
-
|
| 554 |
-
"clarification": interact,
|
| 555 |
-
"tools": tools
|
| 556 |
-
}
|
| 557 |
|
| 558 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 559 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
"""
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
}
|
| 619 |
-
|
| 620 |
-
yield "<followup-json>\n\n"
|
| 621 |
-
yield json.dumps(result) + "\n\n"
|
| 622 |
-
yield "</followup-json>\n\n"
|
| 623 |
-
|
| 624 |
-
# Add the assistant's response to the conversation history
|
| 625 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
| 626 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
| 627 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
| 628 |
-
|
| 629 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
@app.post("/v4/followup-agent")
|
| 633 |
-
async def followup_agent_v4(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 634 |
-
"""
|
| 635 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
| 636 |
-
Requires API Key authentication via X-API-Key header.
|
| 637 |
-
"""
|
| 638 |
-
logger.info(f"Received followup agent query: {query.query}")
|
| 639 |
-
|
| 640 |
-
if query.conversation_id not in conversations:
|
| 641 |
-
conversations[query.conversation_id] = [
|
| 642 |
-
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
|
| 643 |
-
]
|
| 644 |
-
|
| 645 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
| 646 |
-
last_activity[query.conversation_id] = time.time()
|
| 647 |
-
|
| 648 |
-
# Limit tokens in the conversation history
|
| 649 |
-
limited_conversation = conversations[query.conversation_id]
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
async def process_response():
|
| 653 |
-
yield "<followup-response>"+"\n"
|
| 654 |
-
full_response = ""
|
| 655 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 656 |
-
full_response += content
|
| 657 |
-
yield content
|
| 658 |
-
yield "</followup-response>"+"\n"
|
| 659 |
-
yield "--END_SECTION--\n"
|
| 660 |
-
|
| 661 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
response_content, interact, tools = parse_followup_and_tools(full_response)
|
| 665 |
-
result = {
|
| 666 |
-
"clarification": interact
|
| 667 |
-
}
|
| 668 |
-
|
| 669 |
-
yield "<followup-json>" + "\n"
|
| 670 |
-
yield json.dumps(result) + "\n"
|
| 671 |
-
yield "</followup-json>" +"\n"
|
| 672 |
-
yield "--END_SECTION--\n"
|
| 673 |
-
# Add the assistant's response to the conversation history
|
| 674 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
| 675 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
| 676 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
| 677 |
-
|
| 678 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 679 |
-
|
| 680 |
-
## Digiyatra
|
| 681 |
-
|
| 682 |
-
@app.post("/digiyatra-followup")
|
| 683 |
-
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 684 |
-
"""
|
| 685 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
| 686 |
-
Requires API Key authentication via X-API-Key header.
|
| 687 |
-
"""
|
| 688 |
-
logger.info(f"Received followup agent query: {query.query}")
|
| 689 |
-
|
| 690 |
-
if query.conversation_id not in conversations:
|
| 691 |
-
conversations[query.conversation_id] = [
|
| 692 |
-
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
|
| 693 |
-
]
|
| 694 |
-
|
| 695 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
| 696 |
-
last_activity[query.conversation_id] = time.time()
|
| 697 |
-
|
| 698 |
-
# Limit tokens in the conversation history
|
| 699 |
-
limited_conversation = conversations[query.conversation_id]
|
| 700 |
-
|
| 701 |
-
def process_response():
|
| 702 |
-
full_response = ""
|
| 703 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 704 |
-
full_response += content
|
| 705 |
-
yield content
|
| 706 |
-
|
| 707 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
| 708 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
| 709 |
-
|
| 710 |
-
result = {
|
| 711 |
-
"response": response_content,
|
| 712 |
-
"clarification": interact
|
| 713 |
-
}
|
| 714 |
-
|
| 715 |
-
yield "\n\n" + json.dumps(result)
|
| 716 |
-
|
| 717 |
-
# Add the assistant's response to the conversation history
|
| 718 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
| 719 |
-
|
| 720 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
| 721 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
| 722 |
-
|
| 723 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
@app.post("/v2/digiyatra-followup")
|
| 727 |
-
async def digi_followup_agent_v2(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
| 728 |
-
"""
|
| 729 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
| 730 |
-
Requires API Key authentication via X-API-Key header.
|
| 731 |
-
"""
|
| 732 |
-
logger.info(f"Received followup agent query: {query.query}")
|
| 733 |
-
|
| 734 |
-
if query.conversation_id not in conversations:
|
| 735 |
-
conversations[query.conversation_id] = [
|
| 736 |
-
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
|
| 737 |
-
]
|
| 738 |
-
|
| 739 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
| 740 |
-
last_activity[query.conversation_id] = time.time()
|
| 741 |
-
|
| 742 |
-
# Limit tokens in the conversation history
|
| 743 |
-
limited_conversation = conversations[query.conversation_id]
|
| 744 |
-
|
| 745 |
-
def process_response():
|
| 746 |
-
full_response = ""
|
| 747 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
| 748 |
-
full_response += content
|
| 749 |
-
yield json.dumps({"type": "response","content": content}) + "\n"
|
| 750 |
-
|
| 751 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
| 752 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
| 753 |
-
|
| 754 |
-
result = {
|
| 755 |
-
"response": response_content,
|
| 756 |
-
"clarification": interact
|
| 757 |
-
}
|
| 758 |
-
yield json.dumps({"type": "interact","content": result}) +"\n"
|
| 759 |
-
|
| 760 |
-
# Add the assistant's response to the conversation history
|
| 761 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
| 762 |
-
|
| 763 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
| 764 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
| 765 |
-
|
| 766 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
from document_generator import router as document_generator_router
|
| 770 |
-
app.include_router(document_generator_router, prefix="/api/v1")
|
| 771 |
-
|
| 772 |
-
from document_generator_v2 import router as document_generator_router_v2
|
| 773 |
-
app.include_router(document_generator_router_v2, prefix="/api/v2")
|
| 774 |
-
|
| 775 |
-
from document_generator_v3 import router as document_generator_router_v3
|
| 776 |
-
app.include_router(document_generator_router_v3, prefix="/api/v3")
|
| 777 |
-
|
| 778 |
-
from document_generator_v4 import router as document_generator_router_v4
|
| 779 |
-
app.include_router(document_generator_router_v4, prefix="/api/v4")
|
| 780 |
-
|
| 781 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 782 |
|
| 783 |
-
# CORS middleware setup
|
| 784 |
-
app.add_middleware(
|
| 785 |
-
CORSMiddleware,
|
| 786 |
-
allow_origins=[
|
| 787 |
-
"http://127.0.0.1:5501/",
|
| 788 |
-
"http://localhost:3000",
|
| 789 |
-
"https://www.elevaticsai.com",
|
| 790 |
-
"https://www.elevatics.cloud",
|
| 791 |
-
"https://www.elevatics.online",
|
| 792 |
-
"https://www.elevatics.ai",
|
| 793 |
-
"https://elevaticsai.com",
|
| 794 |
-
"https://elevatics.cloud",
|
| 795 |
-
"https://elevatics.online",
|
| 796 |
-
"https://elevatics.ai",
|
| 797 |
-
"https://pvanand-specialized-agents.hf.space",
|
| 798 |
-
"https://pvanand-general-chat.hf.space"
|
| 799 |
-
],
|
| 800 |
-
allow_credentials=True,
|
| 801 |
-
allow_methods=["GET", "POST"],
|
| 802 |
-
allow_headers=["*"],
|
| 803 |
-
expose_headers=["Content-Disposition"]
|
| 804 |
-
)
|
| 805 |
if __name__ == "__main__":
|
| 806 |
import uvicorn
|
| 807 |
-
|
| 808 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import zipfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import logging
|
| 5 |
+
import tempfile
|
| 6 |
+
import magic
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Set, Optional
|
| 9 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Request
|
| 10 |
+
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
|
| 11 |
+
from fastapi.staticfiles import StaticFiles
|
| 12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 13 |
+
from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
logging.basicConfig(
|
| 17 |
level=logging.INFO,
|
| 18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
+
# Initialize FastAPI app
|
| 23 |
+
app = FastAPI(title="Static Site Server")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Add security middlewares
|
| 26 |
+
app.add_middleware(
|
| 27 |
+
CORSMiddleware,
|
| 28 |
+
allow_origins=["*"], # Configure as needed
|
| 29 |
+
allow_credentials=True,
|
| 30 |
+
allow_methods=["*"],
|
| 31 |
+
allow_headers=["*"],
|
| 32 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
app.add_middleware(
|
| 35 |
+
TrustedHostMiddleware,
|
| 36 |
+
allowed_hosts=["*"] # Configure as needed
|
| 37 |
+
)
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# Constants
|
| 40 |
+
MAX_UPLOAD_SIZE = 100 * 1024 * 1024 # 100MB
|
| 41 |
+
ALLOWED_EXTENSIONS = {'.html', '.css', '.js', '.jpg', '.jpeg', '.png', '.gif', '.svg', '.ico', '.woff', '.woff2', '.ttf', '.eot'}
|
| 42 |
+
|
| 43 |
+
class SiteManager:
|
| 44 |
+
def __init__(self):
|
| 45 |
+
self.sites_dir = Path("/app/sites")
|
| 46 |
+
self.temp_dir = Path("/app/temp")
|
| 47 |
+
self.active_sites: Set[str] = set()
|
| 48 |
+
|
| 49 |
+
# Ensure directories exist
|
| 50 |
+
self.sites_dir.mkdir(parents=True, exist_ok=True)
|
| 51 |
+
self.temp_dir.mkdir(parents=True, exist_ok=True)
|
| 52 |
+
|
| 53 |
+
# Load existing sites
|
| 54 |
+
self._load_existing_sites()
|
| 55 |
+
|
| 56 |
+
def _load_existing_sites(self):
|
| 57 |
+
"""Load existing sites from disk"""
|
| 58 |
+
logger.info("Loading existing sites...")
|
| 59 |
+
for site_dir in self.sites_dir.iterdir():
|
| 60 |
+
if site_dir.is_dir() and (site_dir / 'index.html').exists():
|
| 61 |
+
self.active_sites.add(site_dir.name)
|
| 62 |
+
logger.info(f"Loaded site: {site_dir.name}")
|
| 63 |
+
|
| 64 |
+
def _validate_file_types(self, zip_path: Path) -> bool:
|
| 65 |
+
"""Validate file types in ZIP archive"""
|
| 66 |
+
mime = magic.Magic(mime=True)
|
| 67 |
+
with zipfile.ZipFile(zip_path) as zip_ref:
|
| 68 |
+
for file_info in zip_ref.filelist:
|
| 69 |
+
if file_info.filename.endswith('/'): # Skip directories
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
suffix = Path(file_info.filename).suffix.lower()
|
| 73 |
+
if suffix not in ALLOWED_EXTENSIONS:
|
| 74 |
+
return False
|
| 75 |
+
|
| 76 |
+
# Extract file to check MIME type
|
| 77 |
+
with tempfile.NamedTemporaryFile() as tmp:
|
| 78 |
+
with zip_ref.open(file_info) as source:
|
| 79 |
+
shutil.copyfileobj(source, tmp)
|
| 80 |
+
tmp.flush()
|
| 81 |
+
mime_type = mime.from_file(tmp.name)
|
| 82 |
+
if mime_type.startswith('application/x-'):
|
| 83 |
+
return False
|
| 84 |
+
return True
|
| 85 |
+
|
| 86 |
+
async def deploy_site(self, unique_id: str, zip_file: UploadFile) -> dict:
|
| 87 |
+
"""Deploy a new site from a ZIP file"""
|
| 88 |
+
if await zip_file.read(1) == b'':
|
| 89 |
+
raise HTTPException(status_code=400, detail="Empty file")
|
| 90 |
+
await zip_file.seek(0)
|
| 91 |
+
|
| 92 |
+
# Create temporary file
|
| 93 |
+
temp_file = self.temp_dir / f"{unique_id}.zip"
|
| 94 |
+
try:
|
| 95 |
+
# Save uploaded file
|
| 96 |
+
content = await zip_file.read()
|
| 97 |
+
if len(content) > MAX_UPLOAD_SIZE:
|
| 98 |
+
raise HTTPException(status_code=400, detail="File too large")
|
| 99 |
|
| 100 |
+
temp_file.write_bytes(content)
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
# Validate ZIP file
|
| 103 |
+
if not zipfile.is_zipfile(temp_file):
|
| 104 |
+
raise HTTPException(status_code=400, detail="Invalid ZIP file")
|
| 105 |
+
|
| 106 |
+
# Validate file types
|
| 107 |
+
if not self._validate_file_types(temp_file):
|
| 108 |
+
raise HTTPException(status_code=400, detail="Invalid file types in ZIP")
|
| 109 |
|
| 110 |
+
# Process the ZIP file
|
| 111 |
+
site_path = self.sites_dir / unique_id
|
| 112 |
+
with zipfile.ZipFile(temp_file) as zip_ref:
|
| 113 |
+
# Verify index.html exists
|
| 114 |
+
if not any(name.endswith('/index.html') or name == 'index.html'
|
| 115 |
+
for name in zip_ref.namelist()):
|
| 116 |
+
raise HTTPException(
|
| 117 |
+
status_code=400,
|
| 118 |
+
detail="ZIP file must contain index.html in root directory"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Clear existing site if present
|
| 122 |
+
if site_path.exists():
|
| 123 |
+
shutil.rmtree(site_path)
|
| 124 |
+
|
| 125 |
+
# Extract files
|
| 126 |
+
zip_ref.extractall(self.temp_dir / unique_id)
|
| 127 |
+
|
| 128 |
+
# Move to final location
|
| 129 |
+
extraction_path = self.temp_dir / unique_id
|
| 130 |
+
root_dir = next(
|
| 131 |
+
(p for p in extraction_path.iterdir() if p.is_dir()
|
| 132 |
+
and (p / 'index.html').exists()),
|
| 133 |
+
extraction_path
|
| 134 |
+
)
|
| 135 |
+
shutil.move(str(root_dir), str(site_path))
|
| 136 |
+
|
| 137 |
+
self.active_sites.add(unique_id)
|
| 138 |
+
return {
|
| 139 |
+
"status": "success",
|
| 140 |
+
"message": f"Site deployed at /{unique_id}",
|
| 141 |
+
"url": f"/{unique_id}"
|
| 142 |
+
}
|
| 143 |
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Error deploying site {unique_id}: {str(e)}")
|
| 146 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 147 |
+
finally:
|
| 148 |
+
# Cleanup
|
| 149 |
+
if temp_file.exists():
|
| 150 |
+
temp_file.unlink()
|
| 151 |
+
cleanup_path = self.temp_dir / unique_id
|
| 152 |
+
if cleanup_path.exists():
|
| 153 |
+
shutil.rmtree(cleanup_path)
|
| 154 |
+
|
| 155 |
+
def remove_site(self, unique_id: str) -> bool:
|
| 156 |
+
"""Remove a deployed site"""
|
| 157 |
+
if unique_id in self.active_sites:
|
| 158 |
+
site_path = self.sites_dir / unique_id
|
| 159 |
+
if site_path.exists():
|
| 160 |
+
shutil.rmtree(site_path)
|
| 161 |
+
self.active_sites.remove(unique_id)
|
| 162 |
+
return True
|
| 163 |
+
return False
|
| 164 |
+
|
| 165 |
+
# Initialize site manager
|
| 166 |
+
site_manager = SiteManager()
|
| 167 |
+
|
| 168 |
+
@app.post("/deploy/{unique_id}")
|
| 169 |
+
async def deploy_site(unique_id: str, file: UploadFile = File(...)):
|
| 170 |
+
"""Deploy a new site from a ZIP file"""
|
| 171 |
+
if not file.filename.endswith('.zip'):
|
| 172 |
+
raise HTTPException(status_code=400, detail="File must be a ZIP archive")
|
| 173 |
+
|
| 174 |
+
result = await site_manager.deploy_site(unique_id, file)
|
| 175 |
+
return JSONResponse(content=result)
|
| 176 |
+
|
| 177 |
+
@app.delete("/site/{unique_id}")
|
| 178 |
+
async def remove_site(unique_id: str):
|
| 179 |
+
"""Remove a deployed site"""
|
| 180 |
+
if site_manager.remove_site(unique_id):
|
| 181 |
+
return {"status": "success", "message": f"Site {unique_id} removed"}
|
| 182 |
+
raise HTTPException(status_code=404, detail="Site not found")
|
| 183 |
+
|
| 184 |
+
@app.get("/sites")
|
| 185 |
+
async def list_sites():
|
| 186 |
+
"""List all deployed sites"""
|
| 187 |
+
return {"sites": list(site_manager.active_sites)}
|
| 188 |
+
|
| 189 |
+
@app.get("/health")
|
| 190 |
+
async def health_check():
|
| 191 |
+
"""Health check endpoint"""
|
| 192 |
+
return {"status": "healthy", "sites_count": len(site_manager.active_sites)}
|
| 193 |
+
|
| 194 |
+
# Mount static file handlers for each site
|
| 195 |
+
@app.on_event("startup")
|
| 196 |
+
async def startup_event():
|
| 197 |
+
"""Configure static file handlers for existing sites"""
|
| 198 |
+
logger.info("Starting up server...")
|
| 199 |
+
for site_id in site_manager.active_sites:
|
| 200 |
+
site_path = site_manager.sites_dir / site_id
|
| 201 |
+
app.mount(f"/{site_id}", StaticFiles(directory=str(site_path), html=True), name=site_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
if __name__ == "__main__":
|
| 204 |
import uvicorn
|
| 205 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|