qlemesle commited on
Commit
5f96335
·
1 Parent(s): cf3cfee
Files changed (1) hide show
  1. README.md +1 -92
README.md CHANGED
@@ -9,95 +9,4 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
-
14
- # Metric Card for IndicGLUE
15
-
16
- ## Metric description
17
- This metric is used to compute the evaluation metric for the [IndicGLUE dataset](https://huggingface.co/datasets/indic_glue).
18
-
19
- IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - Assamese (`as`), Bengali (`bn`), Gujarati (`gu`), Hindi (`hi`), Kannada (`kn`), Malayalam (`ml`), Marathi(`mr`), Oriya(`or`), Panjabi (`pa`), Tamil(`ta`) and Telugu (`te`).
20
-
21
- ## How to use
22
-
23
- There are two steps: (1) loading the IndicGLUE metric relevant to the subset of the dataset being used for evaluation; and (2) calculating the metric.
24
-
25
- 1. **Loading the relevant IndicGLUE metric** : the subsets of IndicGLUE are the following: `wnli`, `copa`, `sna`, `csqa`, `wstp`, `inltkh`, `bbca`, `cvit-mkb-clsr`, `iitp-mr`, `iitp-pr`, `actsa-sc`, `md`, and`wiki-ner`.
26
-
27
- More information about the different subsets of the Indic GLUE dataset can be found on the [IndicGLUE dataset page](https://indicnlp.ai4bharat.org/indic-glue/).
28
-
29
- 2. **Calculating the metric**: the metric takes two inputs : one list with the predictions of the model to score and one lists of references for each translation for all subsets of the dataset except for `cvit-mkb-clsr`, where each prediction and reference is a vector of floats.
30
-
31
- ```python
32
- indic_glue_metric = evaluate.load('indic_glue', 'wnli')
33
- references = [0, 1]
34
- predictions = [0, 1]
35
- results = indic_glue_metric.compute(predictions=predictions, references=references)
36
- ```
37
-
38
- ## Output values
39
- The output of the metric depends on the IndicGLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
40
-
41
- `accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information).
42
-
43
- `f1`: the harmonic mean of the precision and recall (see [F1 score](https://huggingface.co/metrics/f1) for more information). Its range is 0-1 -- its lowest possible value is 0, if either the precision or the recall is 0, and its highest possible value is 1.0, which means perfect precision and recall.
44
-
45
- `precision@10`: the fraction of the true examples among the top 10 predicted examples, with a range between 0 and 1 (see [precision](https://huggingface.co/metrics/precision) for more information).
46
-
47
- The `cvit-mkb-clsr` subset returns `precision@10`, the `wiki-ner` subset returns `accuracy` and `f1`, and all other subsets of Indic GLUE return only accuracy.
48
-
49
- ### Values from popular papers
50
-
51
- The [original IndicGlue paper](https://aclanthology.org/2020.findings-emnlp.445.pdf) reported an average accuracy of 0.766 on the dataset, which varies depending on the subset selected.
52
-
53
- ## Examples
54
-
55
- Maximal values for the WNLI subset (which outputs `accuracy`):
56
-
57
- ```python
58
- indic_glue_metric = evaluate.load('indic_glue', 'wnli')
59
- references = [0, 1]
60
- predictions = [0, 1]
61
- results = indic_glue_metric.compute(predictions=predictions, references=references)
62
- print(results)
63
- {'accuracy': 1.0}
64
- ```
65
-
66
- Minimal values for the Wiki-NER subset (which outputs `accuracy` and `f1`):
67
-
68
- ```python
69
- >>> indic_glue_metric = evaluate.load('indic_glue', 'wiki-ner')
70
- >>> references = [0, 1]
71
- >>> predictions = [1,0]
72
- >>> results = indic_glue_metric.compute(predictions=predictions, references=references)
73
- >>> print(results)
74
- {'accuracy': 1.0, 'f1': 1.0}
75
- ```
76
-
77
- Partial match for the CVIT-Mann Ki Baat subset (which outputs `precision@10`)
78
-
79
- ```python
80
- >>> indic_glue_metric = evaluate.load('indic_glue', 'cvit-mkb-clsr')
81
- >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
82
- >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
83
- >>> results = indic_glue_metric.compute(predictions=predictions, references=references)
84
- >>> print(results)
85
- {'precision@10': 1.0}
86
- ```
87
-
88
- ## Limitations and bias
89
- This metric works only with datasets that have the same format as the [IndicGLUE dataset](https://huggingface.co/datasets/glue).
90
-
91
- ## Citation
92
-
93
- ```bibtex
94
- @inproceedings{kakwani2020indicnlpsuite,
95
- title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
96
- author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
97
- year={2020},
98
- booktitle={Findings of EMNLP},
99
- }
100
- ```
101
-
102
- ## Further References
103
- - [IndicNLP website](https://indicnlp.ai4bharat.org/home/)
 
9
  pinned: false
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference