Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files- app.py +98 -52
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
|
|
|
| 3 |
import matplotlib
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
-
import
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
-
import
|
| 8 |
-
import torch
|
| 9 |
-
import tempfile
|
| 10 |
-
from gradio_imageslider import ImageSlider
|
| 11 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 12 |
|
| 13 |
from depth_anything_v2.dpt import DepthAnythingV2
|
|
|
|
| 14 |
|
| 15 |
css = """
|
| 16 |
#img-display-container {
|
|
@@ -26,78 +28,122 @@ css = """
|
|
| 26 |
height: 62px;
|
| 27 |
}
|
| 28 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 32 |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 33 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 34 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 35 |
}
|
| 36 |
-
|
| 37 |
'vits': 'Small',
|
| 38 |
'vitb': 'Base',
|
| 39 |
'vitl': 'Large',
|
| 40 |
-
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
|
| 41 |
}
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
@spaces.GPU
|
| 56 |
-
def
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
with gr.Blocks(css=css) as demo:
|
| 60 |
-
gr.Markdown(title)
|
| 61 |
-
gr.Markdown(description1)
|
| 62 |
-
gr.Markdown(description2)
|
| 63 |
-
gr.Markdown("### Depth Prediction demo")
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
h, w = image.shape[:2]
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
raw_depth = Image.fromarray(depth.astype('uint16'))
|
| 82 |
-
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 83 |
-
raw_depth.save(tmp_raw_depth.name)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
gray_depth = Image.fromarray(depth)
|
| 90 |
-
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 91 |
-
gray_depth.save(tmp_gray_depth.name)
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
submit
|
|
|
|
| 96 |
|
| 97 |
example_files = os.listdir('assets/examples')
|
| 98 |
example_files.sort()
|
| 99 |
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
| 100 |
-
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider
|
| 101 |
|
| 102 |
|
| 103 |
if __name__ == '__main__':
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import spaces
|
| 4 |
import matplotlib
|
| 5 |
+
|
| 6 |
import numpy as np
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
from PIL import Image
|
| 10 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
+
from gradio_imageslider import ImageSlider
|
| 13 |
|
| 14 |
from depth_anything_v2.dpt import DepthAnythingV2
|
| 15 |
+
from loguru import logger
|
| 16 |
|
| 17 |
css = """
|
| 18 |
#img-display-container {
|
|
|
|
| 28 |
height: 62px;
|
| 29 |
}
|
| 30 |
"""
|
| 31 |
+
|
| 32 |
+
title = "# Depth Anything: Watch V1 and V2 side by side."
|
| 33 |
+
description1 = """Please refer to **Depth Anything V2** [paper](https://arxiv.org/abs/2406.09414) for more details."""
|
| 34 |
+
|
| 35 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 36 |
+
DEFAULT_V2_MODEL_NAME = "Base"
|
| 37 |
+
DEFAULT_V1_MODEL_NAME = "Base"
|
| 38 |
+
|
| 39 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 40 |
+
|
| 41 |
+
# --------------------------------------------------------------------
|
| 42 |
+
# Depth anything V1 configuration
|
| 43 |
+
# --------------------------------------------------------------------
|
| 44 |
+
depth_anything_v1_name2checkpoint = {
|
| 45 |
+
"Small": "LiheYoung/depth-anything-small-hf",
|
| 46 |
+
"Base": "LiheYoung/depth-anything-base-hf",
|
| 47 |
+
"Large": "LiheYoung/depth-anything-large-hf",
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
depth_anything_v1_pipelines = {}
|
| 51 |
+
# --------------------------------------------------------------------
|
| 52 |
+
# Depth anything V2 configuration
|
| 53 |
+
# --------------------------------------------------------------------
|
| 54 |
+
|
| 55 |
+
depth_anything_v2_configs = {
|
| 56 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 57 |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 58 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 59 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 60 |
}
|
| 61 |
+
depth_anything_v2_encoder2name = {
|
| 62 |
'vits': 'Small',
|
| 63 |
'vitb': 'Base',
|
| 64 |
'vitl': 'Large',
|
| 65 |
+
# 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
|
| 66 |
}
|
| 67 |
+
depth_anything_v2_name2encoder = {v: k for k, v in depth_anything_v2_encoder2name.items()}
|
| 68 |
+
|
| 69 |
+
depth_anything_v2_models = {}
|
| 70 |
+
# --------------------------------------------------------------------
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_v1_pipe(model_name):
|
| 74 |
+
return pipeline(task="depth-estimation", model=depth_anything_v1_name2checkpoint[model_name], device=DEVICE)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_v2_model(model_name):
|
| 78 |
+
encoder = depth_anything_v2_name2encoder[model_name]
|
| 79 |
+
model = DepthAnythingV2(**depth_anything_v2_configs[encoder])
|
| 80 |
+
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
|
| 81 |
+
state_dict = torch.load(filepath, map_location="cpu")
|
| 82 |
+
model.load_state_dict(state_dict)
|
| 83 |
+
model = model.to(DEVICE).eval()
|
| 84 |
+
return model
|
| 85 |
+
|
| 86 |
|
| 87 |
@spaces.GPU
|
| 88 |
+
def predict_depth_v1(image, model_name):
|
| 89 |
+
if model_name not in depth_anything_v1_pipelines:
|
| 90 |
+
depth_anything_v1_pipelines[model_name] = get_v1_pipe(model_name)
|
| 91 |
+
pipe = depth_anything_v1_pipelines[model_name]
|
| 92 |
+
return pipe(image)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
@spaces.GPU
|
| 96 |
+
def predict_depth_v2(image, model_name):
|
| 97 |
+
if model_name not in depth_anything_v2_models:
|
| 98 |
+
depth_anything_v2_models[model_name] = get_v2_model(model_name)
|
| 99 |
+
model = depth_anything_v2_models[model_name]
|
| 100 |
+
return model.infer_image(image)
|
| 101 |
|
|
|
|
| 102 |
|
| 103 |
+
def compute_depth_map_v2(image, model_select: str):
|
| 104 |
+
depth = predict_depth_v2(image[:, :, ::-1], model_select)
|
| 105 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 106 |
+
depth = depth.astype(np.uint8)
|
| 107 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
| 108 |
+
return colored_depth
|
| 109 |
|
|
|
|
| 110 |
|
| 111 |
+
def compute_depth_map_v1(image, model_select):
|
| 112 |
+
pil_image = Image.fromarray(image)
|
| 113 |
+
depth = predict_depth_v1(pil_image, model_select)
|
| 114 |
+
depth = np.array(depth["depth"]).astype(np.uint8)
|
| 115 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
| 116 |
+
return colored_depth
|
| 117 |
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
def on_submit(image, model_v1_select, model_v2_select):
|
| 120 |
+
logger.info(f"Computing depth for V1 model: {model_v1_select} and V2 model: {model_v2_select}")
|
| 121 |
+
colored_depth_v1 = compute_depth_map_v1(image, model_v1_select)
|
| 122 |
+
colored_depth_v2 = compute_depth_map_v2(image, model_v2_select)
|
| 123 |
+
return colored_depth_v1, colored_depth_v2
|
| 124 |
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
with gr.Blocks(css=css) as demo:
|
| 127 |
+
gr.Markdown(title)
|
| 128 |
+
gr.Markdown(description1)
|
| 129 |
+
gr.Markdown("### Depth Prediction demo")
|
| 130 |
+
with gr.Row():
|
| 131 |
+
model_select_v1 = gr.Dropdown(label="Depth Anything V1 Model", choices=list(depth_anything_v1_name2checkpoint.keys()), value=DEFAULT_V1_MODEL_NAME)
|
| 132 |
+
model_select_v2 = gr.Dropdown(label="Depth Anything V2 Model", choices=list(depth_anything_v2_encoder2name.values()), value=DEFAULT_V2_MODEL_NAME)
|
| 133 |
+
with gr.Row():
|
| 134 |
+
gr.Markdown()
|
| 135 |
+
gr.Markdown("Depth Maps: V1 <-> V2")
|
| 136 |
+
with gr.Row():
|
| 137 |
+
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
| 138 |
+
depth_image_slider = ImageSlider(elem_id='img-display-output', position=0.5)
|
| 139 |
|
| 140 |
+
submit = gr.Button(value="Compute Depth")
|
| 141 |
+
submit.click(on_submit, inputs=[input_image, model_select_v1, model_select_v2], outputs=[depth_image_slider])
|
| 142 |
|
| 143 |
example_files = os.listdir('assets/examples')
|
| 144 |
example_files.sort()
|
| 145 |
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
| 146 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider], fn=on_submit)
|
| 147 |
|
| 148 |
|
| 149 |
if __name__ == '__main__':
|
requirements.txt
CHANGED
|
@@ -4,4 +4,7 @@ torch
|
|
| 4 |
torchvision
|
| 5 |
opencv-python
|
| 6 |
matplotlib
|
| 7 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
torchvision
|
| 5 |
opencv-python
|
| 6 |
matplotlib
|
| 7 |
+
huggingface_hub
|
| 8 |
+
transformers
|
| 9 |
+
numpy==1.*
|
| 10 |
+
loguru
|