Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, Response, send_file
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
import os
|
| 5 |
+
import logging
|
| 6 |
+
import io
|
| 7 |
+
import numpy as np
|
| 8 |
+
import scipy.io.wavfile as wavfile
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
from pydub import AudioSegment
|
| 11 |
+
import time
|
| 12 |
+
from functools import lru_cache
|
| 13 |
+
import gc
|
| 14 |
+
import psutil
|
| 15 |
+
import threading
|
| 16 |
+
import time
|
| 17 |
+
from queue import Queue
|
| 18 |
+
import uuid
|
| 19 |
+
import subprocess
|
| 20 |
+
import tempfile
|
| 21 |
+
import atexit
|
| 22 |
+
|
| 23 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
IS_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
| 27 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
| 28 |
+
|
| 29 |
+
if IS_HF_SPACE:
|
| 30 |
+
device = "cpu"
|
| 31 |
+
torch.set_num_threads(2)
|
| 32 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 33 |
+
logger.info("Running on Hugging Face Spaces - CPU optimized mode")
|
| 34 |
+
else:
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
torch.set_num_threads(4)
|
| 37 |
+
|
| 38 |
+
logger.info(f"Using device: {device}")
|
| 39 |
+
|
| 40 |
+
app = Flask(__name__)
|
| 41 |
+
app.config['TEMP_AUDIO_DIR'] = '/tmp/audio_responses'
|
| 42 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
| 43 |
+
|
| 44 |
+
stt_pipeline = None
|
| 45 |
+
llm_model = None
|
| 46 |
+
llm_tokenizer = None
|
| 47 |
+
tts_pipeline = None
|
| 48 |
+
tts_type = None
|
| 49 |
+
|
| 50 |
+
active_files = {}
|
| 51 |
+
file_cleanup_lock = threading.Lock()
|
| 52 |
+
cleanup_thread = None
|
| 53 |
+
|
| 54 |
+
def cleanup_old_files():
|
| 55 |
+
while True:
|
| 56 |
+
try:
|
| 57 |
+
with file_cleanup_lock:
|
| 58 |
+
current_time = time.time()
|
| 59 |
+
files_to_remove = []
|
| 60 |
+
|
| 61 |
+
for file_id, file_info in list(active_files.items()):
|
| 62 |
+
if current_time - file_info['created_time'] > 300:
|
| 63 |
+
files_to_remove.append(file_id)
|
| 64 |
+
|
| 65 |
+
for file_id in files_to_remove:
|
| 66 |
+
try:
|
| 67 |
+
if os.path.exists(active_files[file_id]['filepath']):
|
| 68 |
+
os.remove(active_files[file_id]['filepath'])
|
| 69 |
+
del active_files[file_id]
|
| 70 |
+
logger.info(f"Cleaned up file: {file_id}")
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logger.warning(f"Cleanup error for {file_id}: {e}")
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logger.error(f"Cleanup thread error: {e}")
|
| 75 |
+
|
| 76 |
+
time.sleep(60)
|
| 77 |
+
|
| 78 |
+
def start_cleanup_thread():
|
| 79 |
+
global cleanup_thread
|
| 80 |
+
if cleanup_thread is None or not cleanup_thread.is_alive():
|
| 81 |
+
cleanup_thread = threading.Thread(target=cleanup_old_files, daemon=True)
|
| 82 |
+
cleanup_thread.start()
|
| 83 |
+
logger.info("Cleanup thread started")
|
| 84 |
+
|
| 85 |
+
def cleanup_all_files():
|
| 86 |
+
try:
|
| 87 |
+
with file_cleanup_lock:
|
| 88 |
+
for file_id, file_info in active_files.items():
|
| 89 |
+
try:
|
| 90 |
+
if os.path.exists(file_info['filepath']):
|
| 91 |
+
os.remove(file_info['filepath'])
|
| 92 |
+
except:
|
| 93 |
+
pass
|
| 94 |
+
active_files.clear()
|
| 95 |
+
|
| 96 |
+
if os.path.exists(app.config['TEMP_AUDIO_DIR']):
|
| 97 |
+
import shutil
|
| 98 |
+
shutil.rmtree(app.config['TEMP_AUDIO_DIR'], ignore_errors=True)
|
| 99 |
+
|
| 100 |
+
logger.info("All temporary files cleaned up")
|
| 101 |
+
except Exception as e:
|
| 102 |
+
logger.warning(f"Final cleanup error: {e}")
|
| 103 |
+
|
| 104 |
+
atexit.register(cleanup_all_files)
|
| 105 |
+
|
| 106 |
+
def get_memory_usage():
|
| 107 |
+
try:
|
| 108 |
+
process = psutil.Process(os.getpid())
|
| 109 |
+
memory_info = process.memory_info()
|
| 110 |
+
return {
|
| 111 |
+
"rss_mb": memory_info.rss / 1024 / 1024,
|
| 112 |
+
"vms_mb": memory_info.vms / 1024 / 1024,
|
| 113 |
+
"available_mb": psutil.virtual_memory().available / 1024 / 1024,
|
| 114 |
+
"percent": psutil.virtual_memory().percent
|
| 115 |
+
}
|
| 116 |
+
except Exception as e:
|
| 117 |
+
logger.warning(f"Memory info error: {e}")
|
| 118 |
+
return {"rss_mb": 0, "vms_mb": 0, "available_mb": 0, "percent": 0}
|
| 119 |
+
|
| 120 |
+
def initialize_models():
|
| 121 |
+
global stt_pipeline, llm_model, llm_tokenizer, tts_pipeline, tts_type
|
| 122 |
+
|
| 123 |
+
try:
|
| 124 |
+
logger.info(f"Initial memory usage: {get_memory_usage()}")
|
| 125 |
+
|
| 126 |
+
if stt_pipeline is None:
|
| 127 |
+
logger.info("Loading Whisper-tiny STT model...")
|
| 128 |
+
try:
|
| 129 |
+
stt_pipeline = pipeline(
|
| 130 |
+
"automatic-speech-recognition",
|
| 131 |
+
model="openai/whisper-tiny",
|
| 132 |
+
device=device,
|
| 133 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 134 |
+
token=HF_TOKEN,
|
| 135 |
+
return_timestamps=False
|
| 136 |
+
)
|
| 137 |
+
logger.info("β
STT model loaded successfully")
|
| 138 |
+
except Exception as e:
|
| 139 |
+
logger.error(f"STT loading failed: {e}")
|
| 140 |
+
raise
|
| 141 |
+
|
| 142 |
+
gc.collect()
|
| 143 |
+
logger.info(f"STT loaded. Memory: {get_memory_usage()}")
|
| 144 |
+
|
| 145 |
+
if llm_model is None:
|
| 146 |
+
logger.info("Loading DialoGPT-small LLM...")
|
| 147 |
+
try:
|
| 148 |
+
model_name = "google/flan-t5-base"
|
| 149 |
+
|
| 150 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(
|
| 151 |
+
model_name,
|
| 152 |
+
token=HF_TOKEN,
|
| 153 |
+
trust_remote_code=True
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
llm_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 157 |
+
model_name,
|
| 158 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 159 |
+
token=HF_TOKEN,
|
| 160 |
+
trust_remote_code=True
|
| 161 |
+
).to(device)
|
| 162 |
+
|
| 163 |
+
if llm_tokenizer.pad_token is None:
|
| 164 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 165 |
+
|
| 166 |
+
logger.info("β
LLM model loaded successfully")
|
| 167 |
+
except Exception as e:
|
| 168 |
+
logger.error(f"LLM loading failed: {e}")
|
| 169 |
+
raise
|
| 170 |
+
|
| 171 |
+
gc.collect()
|
| 172 |
+
logger.info(f"LLM loaded. Memory: {get_memory_usage()}")
|
| 173 |
+
|
| 174 |
+
if tts_pipeline is None:
|
| 175 |
+
logger.info("Loading TTS model...")
|
| 176 |
+
tts_loaded = False
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
from gtts import gTTS
|
| 180 |
+
tts_pipeline = "gtts"
|
| 181 |
+
tts_type = "gtts"
|
| 182 |
+
tts_loaded = True
|
| 183 |
+
logger.info("β
Using gTTS (Google Text-to-Speech)")
|
| 184 |
+
except ImportError:
|
| 185 |
+
logger.warning("gTTS not available")
|
| 186 |
+
|
| 187 |
+
if not tts_loaded:
|
| 188 |
+
tts_pipeline = "silent"
|
| 189 |
+
tts_type = "silent"
|
| 190 |
+
logger.warning("Using silent fallback for TTS")
|
| 191 |
+
|
| 192 |
+
gc.collect()
|
| 193 |
+
logger.info(f"TTS loaded. Memory: {get_memory_usage()}")
|
| 194 |
+
|
| 195 |
+
logger.info("π All models loaded successfully!")
|
| 196 |
+
start_cleanup_thread()
|
| 197 |
+
|
| 198 |
+
except Exception as e:
|
| 199 |
+
logger.error(f"β Model loading error: {e}")
|
| 200 |
+
logger.error(f"Memory usage at error: {get_memory_usage()}")
|
| 201 |
+
raise e
|
| 202 |
+
|
| 203 |
+
@lru_cache(maxsize=32)
|
| 204 |
+
def cached_generate_response(text_hash, text):
|
| 205 |
+
return generate_llm_response(text)
|
| 206 |
+
|
| 207 |
+
def generate_llm_response(text):
|
| 208 |
+
try:
|
| 209 |
+
if len(text) > 200:
|
| 210 |
+
text = text[:200]
|
| 211 |
+
|
| 212 |
+
if not text.strip():
|
| 213 |
+
return "I'm listening. How can I help you?"
|
| 214 |
+
|
| 215 |
+
inputs = llm_tokenizer(
|
| 216 |
+
text,
|
| 217 |
+
return_tensors="pt",
|
| 218 |
+
truncation=True,
|
| 219 |
+
padding=True,
|
| 220 |
+
max_length=512
|
| 221 |
+
)
|
| 222 |
+
input_ids = inputs["input_ids"].to(device)
|
| 223 |
+
attention_mask = inputs.get("attention_mask")
|
| 224 |
+
if attention_mask is not None:
|
| 225 |
+
attention_mask = attention_mask.to(device)
|
| 226 |
+
|
| 227 |
+
with torch.no_grad():
|
| 228 |
+
is_seq2seq = getattr(getattr(llm_model, "config", {}), "is_encoder_decoder", False)
|
| 229 |
+
|
| 230 |
+
gen_kwargs = dict(
|
| 231 |
+
max_new_tokens=50,
|
| 232 |
+
do_sample=True,
|
| 233 |
+
temperature=0.7,
|
| 234 |
+
top_k=50,
|
| 235 |
+
top_p=0.9,
|
| 236 |
+
no_repeat_ngram_size=2,
|
| 237 |
+
early_stopping=True,
|
| 238 |
+
pad_token_id=llm_tokenizer.eos_token_id if llm_tokenizer.pad_token_id is None else llm_tokenizer.pad_token_id,
|
| 239 |
+
use_cache=True
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
if is_seq2seq:
|
| 243 |
+
outputs_ids = llm_model.generate(
|
| 244 |
+
input_ids=input_ids,
|
| 245 |
+
attention_mask=attention_mask,
|
| 246 |
+
**gen_kwargs
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
outputs_ids = llm_model.generate(
|
| 250 |
+
input_ids=input_ids,
|
| 251 |
+
**gen_kwargs
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
response = llm_tokenizer.decode(outputs_ids[0], skip_special_tokens=True)
|
| 255 |
+
|
| 256 |
+
del inputs, input_ids, attention_mask, outputs_ids
|
| 257 |
+
gc.collect()
|
| 258 |
+
if device == "cuda":
|
| 259 |
+
torch.cuda.empty_cache()
|
| 260 |
+
|
| 261 |
+
response = response.strip()
|
| 262 |
+
if not response or len(response) < 3:
|
| 263 |
+
return "I understand. What else would you like to know?"
|
| 264 |
+
|
| 265 |
+
return response
|
| 266 |
+
|
| 267 |
+
except Exception as e:
|
| 268 |
+
logger.error(f"LLM generation error: {e}", exc_info=True)
|
| 269 |
+
return "I'm having trouble processing that. Could you try again?"
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def preprocess_audio_optimized(audio_bytes):
|
| 273 |
+
try:
|
| 274 |
+
logger.info(f"Processing audio: {len(audio_bytes)} bytes")
|
| 275 |
+
|
| 276 |
+
if len(audio_bytes) > 44 and audio_bytes[:4] == b'RIFF':
|
| 277 |
+
audio_bytes = audio_bytes[44:] # WAV header'Δ± atla
|
| 278 |
+
logger.info("WAV header removed")
|
| 279 |
+
|
| 280 |
+
audio_data = np.frombuffer(audio_bytes, dtype=np.int16).astype(np.float32) / 32768.0
|
| 281 |
+
|
| 282 |
+
max_samples = 30 * 16000
|
| 283 |
+
if len(audio_data) > max_samples:
|
| 284 |
+
audio_data = audio_data[:max_samples]
|
| 285 |
+
logger.info("Audio trimmed to 30 seconds")
|
| 286 |
+
|
| 287 |
+
min_samples = int(0.5 * 16000)
|
| 288 |
+
if len(audio_data) < min_samples:
|
| 289 |
+
logger.warning(f"Audio too short: {len(audio_data)/16000:.2f} seconds")
|
| 290 |
+
return None, None
|
| 291 |
+
|
| 292 |
+
logger.info(f"Audio processed: {len(audio_data)/16000:.2f} seconds")
|
| 293 |
+
return 16000, audio_data
|
| 294 |
+
|
| 295 |
+
except Exception as e:
|
| 296 |
+
logger.error(f"Audio preprocessing error: {e}")
|
| 297 |
+
raise e
|
| 298 |
+
|
| 299 |
+
def generate_tts_audio(text):
|
| 300 |
+
try:
|
| 301 |
+
text = text.replace('\n', ' ').strip()
|
| 302 |
+
|
| 303 |
+
if len(text) > 200:
|
| 304 |
+
text = text[:200] + "..."
|
| 305 |
+
|
| 306 |
+
if not text:
|
| 307 |
+
text = "I understand."
|
| 308 |
+
|
| 309 |
+
logger.info(f"TTS generating: '{text[:50]}...'")
|
| 310 |
+
|
| 311 |
+
if tts_type == "gtts":
|
| 312 |
+
from gtts import gTTS
|
| 313 |
+
|
| 314 |
+
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as tmp_file:
|
| 315 |
+
try:
|
| 316 |
+
tts = gTTS(text=text, lang='en', slow=False)
|
| 317 |
+
tts.save(tmp_file.name)
|
| 318 |
+
|
| 319 |
+
from pydub import AudioSegment
|
| 320 |
+
audio_segment = AudioSegment.from_file(tmp_file.name, format="mp3")
|
| 321 |
+
audio_segment = audio_segment.set_frame_rate(16000).set_channels(1) # Mono 16kHz
|
| 322 |
+
wav_buffer = io.BytesIO()
|
| 323 |
+
audio_segment.export(wav_buffer, format="wav")
|
| 324 |
+
wav_data = wav_buffer.getvalue()
|
| 325 |
+
|
| 326 |
+
os.unlink(tmp_file.name)
|
| 327 |
+
|
| 328 |
+
return wav_data
|
| 329 |
+
|
| 330 |
+
if len(mp3_data) > 1000:
|
| 331 |
+
logger.info(f"TTS generated: {len(mp3_data)} bytes")
|
| 332 |
+
return mp3_data
|
| 333 |
+
else:
|
| 334 |
+
raise Exception("Generated audio too small")
|
| 335 |
+
|
| 336 |
+
except Exception as e:
|
| 337 |
+
if os.path.exists(tmp_file.name):
|
| 338 |
+
os.unlink(tmp_file.name)
|
| 339 |
+
raise e
|
| 340 |
+
|
| 341 |
+
logger.warning("Using silent fallback")
|
| 342 |
+
audio_segment = AudioSegment.from_file(tmp_file.name, format="mp3")
|
| 343 |
+
wav_buffer = io.BytesIO()
|
| 344 |
+
audio_segment.export(wav_buffer, format="wav")
|
| 345 |
+
return wav_buffer.getvalue()
|
| 346 |
+
|
| 347 |
+
except Exception as e:
|
| 348 |
+
logger.error(f"TTS error: {e}")
|
| 349 |
+
try:
|
| 350 |
+
audio_segment = AudioSegment.from_file(tmp_file.name, format="mp3")
|
| 351 |
+
wav_buffer = io.BytesIO()
|
| 352 |
+
audio_segment.export(wav_buffer, format="wav")
|
| 353 |
+
return wav_buffer.getvalue()
|
| 354 |
+
except:
|
| 355 |
+
return b''
|
| 356 |
+
|
| 357 |
+
@app.route('/process_audio', methods=['POST'])
|
| 358 |
+
def process_audio():
|
| 359 |
+
start_time = time.time()
|
| 360 |
+
|
| 361 |
+
if not all([stt_pipeline, llm_model, llm_tokenizer, tts_pipeline]):
|
| 362 |
+
logger.error("Models not ready")
|
| 363 |
+
return jsonify({"error": "Models are still loading, please wait..."}), 503
|
| 364 |
+
|
| 365 |
+
if not request.data:
|
| 366 |
+
return jsonify({"error": "No audio data received"}), 400
|
| 367 |
+
|
| 368 |
+
if len(request.data) < 1000:
|
| 369 |
+
return jsonify({"error": "Audio data too small"}), 400
|
| 370 |
+
|
| 371 |
+
initial_memory = get_memory_usage()
|
| 372 |
+
logger.info(f"π― Processing started. Memory: {initial_memory['rss_mb']:.1f}MB")
|
| 373 |
+
|
| 374 |
+
try:
|
| 375 |
+
logger.info("π€ Converting speech to text...")
|
| 376 |
+
stt_start = time.time()
|
| 377 |
+
|
| 378 |
+
rate, audio_data = preprocess_audio_optimized(request.data)
|
| 379 |
+
|
| 380 |
+
if audio_data is None:
|
| 381 |
+
return jsonify({"error": "Invalid or too short audio"}), 400
|
| 382 |
+
|
| 383 |
+
stt_result = stt_pipeline(
|
| 384 |
+
{"sampling_rate": rate, "raw": audio_data},
|
| 385 |
+
generate_kwargs={"language": "en"}
|
| 386 |
+
)
|
| 387 |
+
transcribed_text = stt_result.get('text', '').strip()
|
| 388 |
+
|
| 389 |
+
del audio_data
|
| 390 |
+
gc.collect()
|
| 391 |
+
|
| 392 |
+
stt_time = time.time() - stt_start
|
| 393 |
+
logger.info(f"β
STT completed: '{transcribed_text}' ({stt_time:.2f}s)")
|
| 394 |
+
|
| 395 |
+
if not transcribed_text or len(transcribed_text) < 2:
|
| 396 |
+
transcribed_text = "Could you repeat that please?"
|
| 397 |
+
|
| 398 |
+
logger.info("π€ Generating AI response...")
|
| 399 |
+
llm_start = time.time()
|
| 400 |
+
|
| 401 |
+
text_hash = hash(transcribed_text.lower())
|
| 402 |
+
assistant_response = cached_generate_response(text_hash, transcribed_text)
|
| 403 |
+
|
| 404 |
+
llm_time = time.time() - llm_start
|
| 405 |
+
logger.info(f"β
LLM completed: '{assistant_response}' ({llm_time:.2f}s)")
|
| 406 |
+
|
| 407 |
+
logger.info("π Converting to speech...")
|
| 408 |
+
tts_start = time.time()
|
| 409 |
+
|
| 410 |
+
audio_response = generate_tts_audio(assistant_response)
|
| 411 |
+
|
| 412 |
+
if not audio_response:
|
| 413 |
+
return jsonify({"error": "TTS generation failed"}), 500
|
| 414 |
+
|
| 415 |
+
tts_time = time.time() - tts_start
|
| 416 |
+
total_time = time.time() - start_time
|
| 417 |
+
|
| 418 |
+
gc.collect()
|
| 419 |
+
torch.cuda.empty_cache() if device == "cuda" else None
|
| 420 |
+
|
| 421 |
+
final_memory = get_memory_usage()
|
| 422 |
+
logger.info(f"β
Processing complete! Total: {total_time:.2f}s (STT:{stt_time:.1f}s, LLM:{llm_time:.1f}s, TTS:{tts_time:.1f}s)")
|
| 423 |
+
logger.info(f"Memory: {initial_memory['rss_mb']:.1f}MB β {final_memory['rss_mb']:.1f}MB")
|
| 424 |
+
|
| 425 |
+
if not os.path.exists(app.config['TEMP_AUDIO_DIR']):
|
| 426 |
+
os.makedirs(app.config['TEMP_AUDIO_DIR'])
|
| 427 |
+
|
| 428 |
+
file_id = str(uuid.uuid4())
|
| 429 |
+
temp_filename = os.path.join(app.config['TEMP_AUDIO_DIR'], f"{file_id}.mp3")
|
| 430 |
+
|
| 431 |
+
temp_filename = os.path.join(app.config['TEMP_AUDIO_DIR'], f"{file_id}.wav")
|
| 432 |
+
with open(temp_filename, 'wb') as f:
|
| 433 |
+
f.write(audio_response)
|
| 434 |
+
|
| 435 |
+
with file_cleanup_lock:
|
| 436 |
+
active_files[file_id] = {
|
| 437 |
+
'filepath': temp_filename,
|
| 438 |
+
'created_time': time.time(),
|
| 439 |
+
'accessed': False
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
response_data = {
|
| 443 |
+
'status': 'success',
|
| 444 |
+
'file_id': file_id,
|
| 445 |
+
'stream_url': f'/stream_audio/{file_id}',
|
| 446 |
+
'message': assistant_response,
|
| 447 |
+
'transcribed': transcribed_text,
|
| 448 |
+
'processing_time': round(total_time, 2)
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
return jsonify(response_data)
|
| 452 |
+
|
| 453 |
+
except Exception as e:
|
| 454 |
+
logger.error(f"β Processing error: {e}", exc_info=True)
|
| 455 |
+
gc.collect()
|
| 456 |
+
torch.cuda.empty_cache() if device == "cuda" else None
|
| 457 |
+
|
| 458 |
+
return jsonify({
|
| 459 |
+
"error": "Processing failed",
|
| 460 |
+
"details": str(e) if not IS_HF_SPACE else "Internal server error"
|
| 461 |
+
}), 500
|
| 462 |
+
|
| 463 |
+
@app.route('/stream_audio/<file_id>')
|
| 464 |
+
def stream_audio(file_id):
|
| 465 |
+
try:
|
| 466 |
+
with file_cleanup_lock:
|
| 467 |
+
if file_id in active_files:
|
| 468 |
+
active_files[file_id]['accessed'] = True
|
| 469 |
+
filepath = active_files[file_id]['filepath']
|
| 470 |
+
|
| 471 |
+
if os.path.exists(filepath):
|
| 472 |
+
logger.info(f"Streaming audio: {file_id}")
|
| 473 |
+
return send_file(
|
| 474 |
+
filepath,
|
| 475 |
+
mimetype='audio/wav',
|
| 476 |
+
as_attachment=False,
|
| 477 |
+
download_name='response.wav'
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
logger.warning(f"Audio file not found: {file_id}")
|
| 481 |
+
return jsonify({'error': 'File not found'}), 404
|
| 482 |
+
|
| 483 |
+
except Exception as e:
|
| 484 |
+
logger.error(f"Stream error: {e}")
|
| 485 |
+
return jsonify({'error': 'Stream failed'}), 500
|
| 486 |
+
|
| 487 |
+
@app.route('/health', methods=['GET'])
|
| 488 |
+
def health_check():
|
| 489 |
+
memory = get_memory_usage()
|
| 490 |
+
|
| 491 |
+
status = {
|
| 492 |
+
"status": "ready" if all([stt_pipeline, llm_model, llm_tokenizer, tts_pipeline]) else "loading",
|
| 493 |
+
"models": {
|
| 494 |
+
"stt": stt_pipeline is not None,
|
| 495 |
+
"llm": llm_model is not None and llm_tokenizer is not None,
|
| 496 |
+
"tts": tts_pipeline is not None,
|
| 497 |
+
"tts_type": tts_type
|
| 498 |
+
},
|
| 499 |
+
"system": {
|
| 500 |
+
"device": device,
|
| 501 |
+
"is_hf_space": IS_HF_SPACE,
|
| 502 |
+
"memory_mb": round(memory['rss_mb'], 1),
|
| 503 |
+
"available_mb": round(memory['available_mb'], 1),
|
| 504 |
+
"memory_percent": round(memory['percent'], 1)
|
| 505 |
+
},
|
| 506 |
+
"files": {
|
| 507 |
+
"active_count": len(active_files),
|
| 508 |
+
"cleanup_running": cleanup_thread is not None and cleanup_thread.is_alive()
|
| 509 |
+
}
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
return jsonify(status)
|
| 513 |
+
|
| 514 |
+
@app.route('/status', methods=['GET'])
|
| 515 |
+
def simple_status():
|
| 516 |
+
models_ready = all([stt_pipeline, llm_model, llm_tokenizer, tts_pipeline])
|
| 517 |
+
return jsonify({"ready": models_ready})
|
| 518 |
+
|
| 519 |
+
@app.route('/', methods=['GET'])
|
| 520 |
+
def home():
|
| 521 |
+
return """
|
| 522 |
+
<!DOCTYPE html>
|
| 523 |
+
<html>
|
| 524 |
+
<head>
|
| 525 |
+
<title>Voice AI Assistant</title>
|
| 526 |
+
<style>
|
| 527 |
+
body { font-family: Arial, sans-serif; margin: 40px; }
|
| 528 |
+
.status { font-size: 18px; margin: 20px 0; }
|
| 529 |
+
.ready { color: green; }
|
| 530 |
+
.loading { color: orange; }
|
| 531 |
+
.error { color: red; }
|
| 532 |
+
code { background: #f4f4f4; padding: 2px 5px; }
|
| 533 |
+
</style>
|
| 534 |
+
</head>
|
| 535 |
+
<body>
|
| 536 |
+
<h1>ποΈ Voice AI Assistant Server</h1>
|
| 537 |
+
<div class="status">Status: <span id="status">Checking...</span></div>
|
| 538 |
+
|
| 539 |
+
<h2>API Endpoints:</h2>
|
| 540 |
+
<ul>
|
| 541 |
+
<li><code>POST /process_audio</code> - Dsn Mechanics </li>
|
| 542 |
+
<li><code>POST /process_audio</code> - Process audio (WAV format, max 16MB)</li>
|
| 543 |
+
<li><code>GET /stream_audio/<file_id></code> - Download audio response</li>
|
| 544 |
+
<li><code>GET /health</code> - Detailed health check</li>
|
| 545 |
+
<li><code>GET /status</code> - Simple ready status</li>
|
| 546 |
+
</ul>
|
| 547 |
+
|
| 548 |
+
<h2>Features:</h2>
|
| 549 |
+
<ul>
|
| 550 |
+
<li>Speech-to-Text (Whisper Tiny)</li>
|
| 551 |
+
<li>AI Response Generation (DialoGPT Small)</li>
|
| 552 |
+
<li>Text-to-Speech (gTTS)</li>
|
| 553 |
+
<li>Automatic file cleanup</li>
|
| 554 |
+
<li>Memory optimization</li>
|
| 555 |
+
</ul>
|
| 556 |
+
|
| 557 |
+
<p><em>Optimized for ESP32 and Hugging Face Spaces</em></p>
|
| 558 |
+
|
| 559 |
+
<script>
|
| 560 |
+
function updateStatus() {
|
| 561 |
+
fetch('/status')
|
| 562 |
+
.then(r => r.json())
|
| 563 |
+
.then(d => {
|
| 564 |
+
const statusEl = document.getElementById('status');
|
| 565 |
+
if (d.ready) {
|
| 566 |
+
statusEl.textContent = 'β
Ready';
|
| 567 |
+
statusEl.className = 'ready';
|
| 568 |
+
} else {
|
| 569 |
+
statusEl.textContent = 'β³ Loading models...';
|
| 570 |
+
statusEl.className = 'loading';
|
| 571 |
+
}
|
| 572 |
+
})
|
| 573 |
+
.catch(() => {
|
| 574 |
+
document.getElementById('status').textContent = 'β Error';
|
| 575 |
+
document.getElementById('status').className = 'error';
|
| 576 |
+
});
|
| 577 |
+
}
|
| 578 |
+
|
| 579 |
+
updateStatus();
|
| 580 |
+
setInterval(updateStatus, 5000);
|
| 581 |
+
</script>
|
| 582 |
+
</body>
|
| 583 |
+
</html>
|
| 584 |
+
"""
|
| 585 |
+
|
| 586 |
+
@app.errorhandler(Exception)
|
| 587 |
+
def handle_exception(e):
|
| 588 |
+
logger.error(f"Unhandled exception: {e}", exc_info=True)
|
| 589 |
+
return jsonify({"error": "Internal server error"}), 500
|
| 590 |
+
|
| 591 |
+
@app.errorhandler(413)
|
| 592 |
+
def handle_large_file(e):
|
| 593 |
+
return jsonify({"error": "Audio file too large (max 16MB)"}), 413
|
| 594 |
+
|
| 595 |
+
if __name__ == '__main__':
|
| 596 |
+
try:
|
| 597 |
+
logger.info("π Starting Voice AI Assistant Server")
|
| 598 |
+
logger.info(f"Environment: {'Hugging Face Spaces' if IS_HF_SPACE else 'Local'}")
|
| 599 |
+
|
| 600 |
+
initialize_models()
|
| 601 |
+
logger.info("π Server ready!")
|
| 602 |
+
|
| 603 |
+
except Exception as e:
|
| 604 |
+
logger.error(f"β Startup failed: {e}")
|
| 605 |
+
exit(1)
|
| 606 |
+
|
| 607 |
+
port = int(os.environ.get('PORT', 7860))
|
| 608 |
+
logger.info(f"π Server starting on port {port}")
|
| 609 |
+
|
| 610 |
+
app.run(
|
| 611 |
+
host='0.0.0.0',
|
| 612 |
+
port=port,
|
| 613 |
+
debug=False,
|
| 614 |
+
threaded=True,
|
| 615 |
+
use_reloader=False
|
| 616 |
+
)
|