Gül Sena Altıntaş
commited on
Commit
·
6c9db61
1
Parent(s):
6383574
Updated app for summary markdown tables
Browse files
app.py
CHANGED
|
@@ -1,32 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
-
from collections import Counter
|
| 6 |
-
import torch
|
| 7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
-
import re
|
| 9 |
-
import logging
|
| 10 |
-
from typing import List, Dict, Any
|
| 11 |
-
import gc
|
| 12 |
-
import os
|
| 13 |
import psutil
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def get_memory_usage():
|
| 17 |
"""Return (gpu_mem_used_MB, gpu_mem_total_MB, ram_used_MB, ram_total_MB)"""
|
| 18 |
# System RAM
|
| 19 |
vm = psutil.virtual_memory()
|
| 20 |
-
ram_used_mb = vm.used / (1024
|
| 21 |
-
ram_total_mb = vm.total / (1024
|
| 22 |
|
| 23 |
# GPU memory
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
gpu_idx = torch.cuda.current_device()
|
| 26 |
torch.cuda.synchronize()
|
| 27 |
-
gpu_mem_alloc = torch.cuda.memory_allocated(gpu_idx) / (1024
|
| 28 |
-
gpu_mem_reserved = torch.cuda.memory_reserved(gpu_idx) / (1024
|
| 29 |
-
gpu_mem_total = torch.cuda.get_device_properties(gpu_idx).total_memory / (
|
|
|
|
|
|
|
| 30 |
gpu_mem_used = max(gpu_mem_alloc, gpu_mem_reserved) # safe estimate
|
| 31 |
else:
|
| 32 |
gpu_mem_used = 0
|
|
@@ -41,77 +44,85 @@ logger = logging.getLogger(__name__)
|
|
| 41 |
|
| 42 |
# Model configurations - maps display names to HF model paths
|
| 43 |
PREDEFINED_MODELS = [
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
]
|
| 56 |
# Global cache for loaded models
|
| 57 |
model_cache = {}
|
| 58 |
|
|
|
|
| 59 |
def parse_dataset(text):
|
| 60 |
"""Parse the input dataset text into structured questions"""
|
| 61 |
if not text.strip():
|
| 62 |
return [], "Please enter your dataset"
|
| 63 |
-
|
| 64 |
-
lines = text.strip().split(
|
| 65 |
if len(lines) < 2:
|
| 66 |
return [], "Dataset must have at least a header and one question"
|
| 67 |
-
|
| 68 |
# Skip header and detect delimiter
|
| 69 |
first_data_line = lines[1] if len(lines) > 1 else lines[0]
|
| 70 |
-
delimiter =
|
| 71 |
-
|
| 72 |
questions = []
|
| 73 |
errors = []
|
| 74 |
-
|
| 75 |
for i, line in enumerate(lines[1:], 2): # Start from line 2 (after header)
|
| 76 |
line = line.strip()
|
| 77 |
if not line:
|
| 78 |
continue
|
| 79 |
-
|
| 80 |
parts = [part.strip().strip('"') for part in line.split(delimiter)]
|
| 81 |
-
|
| 82 |
if len(parts) < 5:
|
| 83 |
errors.append(f"Line {i}: Not enough columns (need 5, got {len(parts)})")
|
| 84 |
continue
|
| 85 |
-
|
| 86 |
question = {
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
}
|
| 91 |
-
|
| 92 |
# Ensure correct answer is in choices
|
| 93 |
-
if question[
|
| 94 |
-
question[
|
| 95 |
-
|
| 96 |
questions.append(question)
|
| 97 |
-
|
| 98 |
-
error_msg =
|
| 99 |
return questions, error_msg
|
| 100 |
|
|
|
|
| 101 |
def setup_tokenizer(model_path):
|
| 102 |
tokenizer_name = model_path
|
| 103 |
if "supertoken" in model_path:
|
| 104 |
-
from huggingface_hub import list_repo_files, hf_hub_download
|
| 105 |
import json
|
|
|
|
|
|
|
|
|
|
| 106 |
files = list_repo_files(model_path)
|
| 107 |
if "tokenizer_config.json" in files:
|
| 108 |
-
tokenizer_path = hf_hub_download(
|
|
|
|
|
|
|
| 109 |
with open(tokenizer_path) as f:
|
| 110 |
tok_config = json.load(f)["data"]["tokenizer"]
|
| 111 |
if tok_config["name"] == "huggingface":
|
| 112 |
tokenizer_name = tok_config["path"]
|
| 113 |
# todo: tiktoken
|
| 114 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
| 115 |
return tokenizer
|
| 116 |
|
| 117 |
|
|
@@ -124,90 +135,96 @@ def load_model_and_tokenizer(model_path, progress_callback=None):
|
|
| 124 |
logger.info(f"Current GPU memory: {gpu_used:.1f}/{gpu_total:.1f} MB")
|
| 125 |
logger.info(f"Current RAM: {ram_used:.1f}/{ram_total:.1f} MB")
|
| 126 |
|
| 127 |
-
use_cache =
|
| 128 |
-
(
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
| 131 |
if not use_cache:
|
| 132 |
logger.warning("High memory usage detected — disabling model cache.")
|
| 133 |
|
| 134 |
-
|
| 135 |
if use_cache and model_path in model_cache:
|
| 136 |
logger.info(f"Using cached model: {model_path}")
|
| 137 |
if progress_callback:
|
| 138 |
progress_callback(1.0, f"✅ Using cached model: {model_path}")
|
| 139 |
return model_cache[model_path]
|
| 140 |
-
|
| 141 |
try:
|
| 142 |
if progress_callback:
|
| 143 |
progress_callback(0.1, f"🔄 Starting to load model: {model_path}")
|
| 144 |
-
|
| 145 |
-
|
| 146 |
# Check if CUDA is available
|
| 147 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 148 |
logger.info(f"Loading model: {model_path} using device: {device}")
|
| 149 |
-
|
| 150 |
if progress_callback:
|
| 151 |
progress_callback(0.2, f"📥 Loading tokenizer for {model_path}...")
|
| 152 |
-
|
| 153 |
# Load tokenizer
|
| 154 |
tokenizer = setup_tokenizer(model_path)
|
| 155 |
-
|
| 156 |
# Add pad token if missing
|
| 157 |
if tokenizer.pad_token is None:
|
| 158 |
tokenizer.pad_token = tokenizer.eos_token
|
| 159 |
-
|
| 160 |
if progress_callback:
|
| 161 |
-
progress_callback(
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
logger.info(os.getcwd())
|
| 164 |
# Load model with appropriate settings
|
| 165 |
model = AutoModelForCausalLM.from_pretrained(
|
| 166 |
model_path,
|
| 167 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 168 |
-
device_map="auto" if device== "cuda" else None,
|
| 169 |
trust_remote_code=True,
|
| 170 |
-
low_cpu_mem_usage=True
|
| 171 |
)
|
| 172 |
-
|
| 173 |
-
model_info = {
|
| 174 |
-
|
| 175 |
-
'model': model,
|
| 176 |
-
'device': device
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
if use_cache:
|
| 180 |
model_cache[model_path] = model_info
|
| 181 |
-
|
| 182 |
if progress_callback:
|
| 183 |
progress_callback(1.0, f"✅ Successfully loaded model: {model_path}")
|
| 184 |
-
|
| 185 |
return model_info
|
| 186 |
-
|
| 187 |
except Exception as e:
|
| 188 |
import code
|
|
|
|
| 189 |
error_msg = f"❌ Error loading model {model_path}: {str(e)}"
|
| 190 |
logger.error(error_msg)
|
| 191 |
# code.interact(local=dict(globals(), **locals()))
|
| 192 |
if progress_callback:
|
| 193 |
progress_callback(0.0, error_msg)
|
| 194 |
return None
|
| 195 |
-
|
|
|
|
| 196 |
def calculate_choice_likelihood(model, tokenizer, question, choice):
|
| 197 |
"""Calculate the log-likelihood of the choice given the question prompt"""
|
| 198 |
try:
|
| 199 |
prompt = f"Question: {question}\nAnswer: "
|
| 200 |
-
prompt=question
|
| 201 |
full_text = f"{prompt} {choice}"
|
| 202 |
|
| 203 |
# Tokenize full input (prompt + answer)
|
| 204 |
-
input_ids = tokenizer.encode(
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
if input_ids.size(1) <= prompt_ids.size(1):
|
| 208 |
logger.warning("Answer tokens are empty after tokenization.")
|
| 209 |
return float("-inf")
|
| 210 |
-
|
| 211 |
with torch.no_grad():
|
| 212 |
outputs = model(input_ids)
|
| 213 |
logits = outputs.logits
|
|
@@ -215,7 +232,9 @@ def calculate_choice_likelihood(model, tokenizer, question, choice):
|
|
| 215 |
# Get logits for the answer tokens only
|
| 216 |
answer_len = input_ids.size(1) - prompt_ids.size(1)
|
| 217 |
target_ids = input_ids[:, -answer_len:]
|
| 218 |
-
logits = logits[
|
|
|
|
|
|
|
| 219 |
|
| 220 |
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
|
| 221 |
token_log_probs = log_probs.gather(2, target_ids.unsqueeze(-1)).squeeze(-1)
|
|
@@ -228,76 +247,95 @@ def calculate_choice_likelihood(model, tokenizer, question, choice):
|
|
| 228 |
return float("-inf")
|
| 229 |
|
| 230 |
|
| 231 |
-
|
| 232 |
def evaluate_model_on_questions(model_path, questions, progress_callback=None):
|
| 233 |
"""Evaluate a single model on all questions using likelihood-based scoring"""
|
| 234 |
-
|
| 235 |
-
model_info = load_model_and_tokenizer(
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
if model_info is None:
|
| 238 |
-
return [{
|
| 239 |
-
|
| 240 |
results = []
|
| 241 |
-
model = model_info[
|
| 242 |
-
tokenizer = model_info[
|
| 243 |
-
|
| 244 |
for i, question in enumerate(questions):
|
| 245 |
try:
|
| 246 |
# Calculate likelihood for each choice
|
| 247 |
choice_likelihoods = {}
|
| 248 |
choice_probs = {}
|
| 249 |
-
|
| 250 |
-
for choice in question[
|
| 251 |
-
likelihood = calculate_choice_likelihood(
|
|
|
|
|
|
|
| 252 |
choice_likelihoods[choice] = likelihood
|
| 253 |
-
|
| 254 |
# Convert log probabilities to probabilities for confidence scoring
|
| 255 |
max_log_prob = max(choice_likelihoods.values())
|
| 256 |
-
choice_probs = {
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
| 259 |
# Normalize probabilities
|
| 260 |
total_prob = sum(choice_probs.values())
|
| 261 |
if total_prob > 0:
|
| 262 |
-
choice_probs = {
|
| 263 |
-
|
|
|
|
|
|
|
| 264 |
# Select the choice with highest likelihood
|
| 265 |
-
predicted_choice = max(
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
| 268 |
# Confidence is the probability of the selected choice
|
| 269 |
confidence = choice_probs.get(predicted_choice, 0.0)
|
| 270 |
-
|
| 271 |
-
results.append(
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
| 281 |
if progress_callback:
|
| 282 |
# Use remaining 80% for evaluation progress
|
| 283 |
evaluation_progress = 0.2 + (i + 1) / len(questions) * 0.8
|
| 284 |
-
progress_callback(
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
| 286 |
except Exception as e:
|
| 287 |
logger.error(f"Error evaluating question {i} with {model_path}: {str(e)}")
|
| 288 |
-
results.append(
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
| 298 |
return results
|
| 299 |
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
| 301 |
"""Main evaluation function"""
|
| 302 |
if not dataset_text.strip():
|
| 303 |
return (
|
|
@@ -305,159 +343,194 @@ def run_evaluation(dataset_text, selected_predefined, custom_models_text="", pro
|
|
| 305 |
"<p>No data provided</p>",
|
| 306 |
None,
|
| 307 |
None,
|
| 308 |
-
gr.update(visible=True)
|
|
|
|
|
|
|
| 309 |
)
|
| 310 |
-
|
| 311 |
# Parse custom models
|
| 312 |
custom_models = []
|
| 313 |
if custom_models_text is None:
|
| 314 |
custom_models_text = ""
|
| 315 |
if custom_models_text.strip():
|
| 316 |
-
custom_models = [
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
# Combine selected models
|
| 319 |
all_models = []
|
| 320 |
-
|
| 321 |
# Add predefined models
|
| 322 |
all_models.extend(selected_predefined)
|
| 323 |
all_models.extend(custom_models)
|
| 324 |
-
|
| 325 |
if not all_models:
|
| 326 |
return (
|
| 327 |
"Please select at least one model or add custom models",
|
| 328 |
"<p>No models selected</p>",
|
| 329 |
None,
|
| 330 |
None,
|
| 331 |
-
gr.update(visible=False)
|
|
|
|
|
|
|
| 332 |
)
|
| 333 |
-
|
| 334 |
# Parse dataset
|
| 335 |
questions, parse_error = parse_dataset(dataset_text)
|
| 336 |
-
|
| 337 |
if parse_error:
|
| 338 |
return (
|
| 339 |
f"Dataset parsing error:\n{parse_error}",
|
| 340 |
"<p>Failed to parse dataset</p>",
|
| 341 |
None,
|
| 342 |
None,
|
| 343 |
-
gr.update(visible=True)
|
|
|
|
|
|
|
| 344 |
)
|
| 345 |
-
|
| 346 |
if not questions:
|
| 347 |
return (
|
| 348 |
"No valid questions found in dataset",
|
| 349 |
"<p>No questions to evaluate</p>",
|
| 350 |
None,
|
| 351 |
None,
|
| 352 |
-
gr.update(visible=True)
|
|
|
|
|
|
|
| 353 |
)
|
| 354 |
-
|
| 355 |
# Run evaluation
|
| 356 |
progress(0, "Starting evaluation...")
|
| 357 |
results = {}
|
| 358 |
total_steps = len(all_models) * len(questions)
|
| 359 |
current_step = 0
|
| 360 |
-
|
| 361 |
summary_md = create_summary_markdown({})
|
| 362 |
for model_path in all_models:
|
| 363 |
-
display_name = model_path.split(
|
| 364 |
try:
|
|
|
|
| 365 |
def model_progress(p, msg):
|
| 366 |
nonlocal current_step
|
| 367 |
current_step = int(p * len(questions))
|
| 368 |
overall_progress = current_step / total_steps
|
| 369 |
progress(overall_progress, msg)
|
| 370 |
-
|
| 371 |
-
model_results = evaluate_model_on_questions(
|
|
|
|
|
|
|
| 372 |
results[display_name] = model_results
|
| 373 |
-
|
| 374 |
except Exception as e:
|
| 375 |
logger.error(f"Failed to evaluate {display_name}: {str(e)}")
|
| 376 |
-
results[display_name] = [{
|
| 377 |
-
|
| 378 |
# Clean up GPU memory
|
| 379 |
if torch.cuda.is_available():
|
| 380 |
torch.cuda.empty_cache()
|
| 381 |
gc.collect()
|
| 382 |
-
|
| 383 |
# Generate outputs
|
| 384 |
summary_stats = generate_summary_stats(questions, results)
|
| 385 |
summary_md = create_summary_markdown(summary_stats)
|
| 386 |
detailed_html = create_detailed_results_html(questions, results)
|
| 387 |
accuracy_chart = create_accuracy_chart(summary_stats)
|
| 388 |
confidence_chart = create_confidence_chart(results)
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
return (
|
| 391 |
summary_md,
|
| 392 |
detailed_html,
|
| 393 |
accuracy_chart,
|
| 394 |
confidence_chart,
|
| 395 |
-
gr.update(visible=True)
|
|
|
|
|
|
|
| 396 |
)
|
| 397 |
|
|
|
|
| 398 |
def generate_summary_stats(questions, results):
|
| 399 |
"""Generate summary statistics for all models"""
|
| 400 |
summary = {}
|
| 401 |
-
|
| 402 |
for model, model_results in results.items():
|
| 403 |
-
if not model_results or
|
| 404 |
summary[model] = {
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
|
|
|
|
|
|
| 410 |
}
|
| 411 |
continue
|
| 412 |
-
|
| 413 |
-
correct_count = sum(1 for r in model_results if r.get(
|
| 414 |
total_count = len(model_results)
|
| 415 |
accuracy = correct_count / total_count if total_count > 0 else 0
|
| 416 |
-
|
| 417 |
# Calculate average confidence
|
| 418 |
-
avg_confidence =
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
summary[model] = {
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
}
|
| 426 |
-
|
| 427 |
return summary
|
| 428 |
|
|
|
|
| 429 |
def create_summary_markdown(summary_stats):
|
| 430 |
"""Create markdown summary of results"""
|
| 431 |
if not summary_stats:
|
| 432 |
return "No results available"
|
| 433 |
-
|
| 434 |
# Sort by accuracy
|
| 435 |
-
sorted_models = sorted(
|
| 436 |
-
|
|
|
|
|
|
|
| 437 |
lines = ["## 🏆 Model Performance Summary\n"]
|
| 438 |
-
|
| 439 |
for i, (model, stats) in enumerate(sorted_models):
|
| 440 |
-
if
|
| 441 |
lines.append(f"❌ **{model}**: Error - {stats['error']}")
|
| 442 |
continue
|
| 443 |
-
|
| 444 |
-
accuracy_pct = stats[
|
| 445 |
-
medal = "🥇" if i == 0 else "🥈" if i == 1 else "🥉" if i == 2 else f"{i+1}."
|
| 446 |
-
|
| 447 |
lines.append(
|
| 448 |
f"{medal} **{model}**: {accuracy_pct:.1f}% "
|
| 449 |
f"({stats['correct']}/{stats['total']} correct, "
|
| 450 |
f"avg confidence: {stats['avg_confidence']:.2f})"
|
| 451 |
)
|
| 452 |
-
|
| 453 |
return "\n".join(lines)
|
| 454 |
|
|
|
|
| 455 |
def create_detailed_results_html(questions, results):
|
| 456 |
"""Create detailed HTML results for each question"""
|
| 457 |
if not questions or not results:
|
| 458 |
return "<p>No detailed results available</p>"
|
| 459 |
-
|
| 460 |
-
html_parts = [
|
|
|
|
| 461 |
<style>
|
| 462 |
.question-card {
|
| 463 |
background: white;
|
|
@@ -544,128 +617,277 @@ def create_detailed_results_html(questions, results):
|
|
| 544 |
font-family: monospace;
|
| 545 |
}
|
| 546 |
</style>
|
| 547 |
-
"""
|
| 548 |
-
|
|
|
|
| 549 |
for q_idx, question in enumerate(questions):
|
| 550 |
html_parts.append(f"""
|
| 551 |
<div class="question-card">
|
| 552 |
<div class="question-header">
|
| 553 |
<span class="question-number">Q{q_idx + 1}</span>
|
| 554 |
</div>
|
| 555 |
-
<div class="question-text">{question[
|
| 556 |
<div class="choices">
|
| 557 |
<strong>Choices:</strong><br>
|
| 558 |
-
{
|
| 559 |
</div>
|
| 560 |
<div class="correct-answer">
|
| 561 |
-
<strong>✓ Correct Answer:</strong> {question[
|
| 562 |
</div>
|
| 563 |
<div class="model-results">
|
| 564 |
""")
|
| 565 |
-
|
| 566 |
# Add results for each model
|
| 567 |
for model, model_results in results.items():
|
| 568 |
if q_idx < len(model_results):
|
| 569 |
result = model_results[q_idx]
|
| 570 |
-
|
| 571 |
-
if
|
| 572 |
html_parts.append(f"""
|
| 573 |
<div class="model-result result-error">
|
| 574 |
<div>⚠️ {model}</div>
|
| 575 |
<div style="font-size: 12px; margin-top: 4px;">
|
| 576 |
Error occurred
|
| 577 |
</div>
|
| 578 |
-
<div class="raw-response">{result.get(
|
| 579 |
</div>
|
| 580 |
""")
|
| 581 |
else:
|
| 582 |
-
result_class =
|
| 583 |
-
|
| 584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
html_parts.append(f"""
|
| 586 |
<div class="model-result {result_class}">
|
| 587 |
<div>{icon} {model}</div>
|
| 588 |
<div style="font-size: 12px; margin-top: 4px;">
|
| 589 |
-
"{result.get(
|
| 590 |
</div>
|
| 591 |
-
<div class="raw-response">Raw: "{result.get(
|
| 592 |
</div>
|
| 593 |
""")
|
| 594 |
-
|
| 595 |
html_parts.append("""
|
| 596 |
</div>
|
| 597 |
</div>
|
| 598 |
""")
|
| 599 |
-
|
| 600 |
return "".join(html_parts)
|
| 601 |
|
|
|
|
| 602 |
def create_accuracy_chart(summary_stats):
|
| 603 |
"""Create accuracy comparison chart"""
|
| 604 |
if not summary_stats:
|
| 605 |
return None
|
| 606 |
-
|
| 607 |
models = []
|
| 608 |
accuracies = []
|
| 609 |
-
|
| 610 |
for model, stats in summary_stats.items():
|
| 611 |
-
if
|
| 612 |
models.append(model)
|
| 613 |
-
accuracies.append(stats[
|
| 614 |
-
|
| 615 |
if not models:
|
| 616 |
return None
|
| 617 |
-
|
| 618 |
-
fig = go.Figure(
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
|
|
|
|
|
|
| 628 |
fig.update_layout(
|
| 629 |
title="Model Accuracy Comparison",
|
| 630 |
xaxis_title="Models",
|
| 631 |
yaxis_title="Accuracy (%)",
|
| 632 |
template="plotly_white",
|
| 633 |
-
showlegend=False
|
| 634 |
)
|
| 635 |
-
|
| 636 |
return fig
|
| 637 |
|
|
|
|
| 638 |
def create_confidence_chart(results):
|
| 639 |
"""Create confidence distribution chart"""
|
| 640 |
if not results:
|
| 641 |
return None
|
| 642 |
-
|
| 643 |
data = []
|
| 644 |
for model, model_results in results.items():
|
| 645 |
for result in model_results:
|
| 646 |
-
if
|
| 647 |
-
data.append(
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
if not data:
|
| 654 |
return None
|
| 655 |
-
|
| 656 |
df = pd.DataFrame(data)
|
| 657 |
-
|
| 658 |
fig = px.box(
|
| 659 |
df,
|
| 660 |
-
x=
|
| 661 |
-
y=
|
| 662 |
-
color=
|
| 663 |
title="Confidence Distribution by Model and Correctness",
|
| 664 |
-
template="plotly_white"
|
| 665 |
)
|
| 666 |
-
|
| 667 |
return fig
|
| 668 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 669 |
# Sample datasets for quick testing
|
| 670 |
SAMPLE_DATASETS = {
|
| 671 |
"Custom (enter below)": "",
|
|
@@ -678,18 +900,16 @@ What is 2+2?,4,3,2,5
|
|
| 678 |
What is 5*3?,15,12,16,18
|
| 679 |
What is 10-7?,3,7,4,2
|
| 680 |
What is 8/2?,4,3,2,5""",
|
| 681 |
-
|
| 682 |
"World Capitals": """Question,Correct Answer,Choice1,Choice2,Choice3
|
| 683 |
What is the capital of France?,Paris,London,Berlin,Rome
|
| 684 |
What is the capital of Japan?,Tokyo,Seoul,Beijing,Bangkok
|
| 685 |
What is the capital of Brazil?,Brasília,Rio de Janeiro,São Paulo,Salvador
|
| 686 |
What is the capital of Australia?,Canberra,Sydney,Melbourne,Perth""",
|
| 687 |
-
|
| 688 |
"Science Quiz": """Question,Correct Answer,Choice1,Choice2,Choice3
|
| 689 |
What is the chemical symbol for gold?,Au,Ag,Ca,K
|
| 690 |
Which planet is closest to the Sun?,Mercury,Venus,Earth,Mars
|
| 691 |
What is the speed of light?,299792458 m/s,300000000 m/s,2992458 m/s,299000000 m/s
|
| 692 |
-
What gas do plants absorb from the atmosphere?,Carbon dioxide,Oxygen,Nitrogen,Hydrogen"""
|
| 693 |
}
|
| 694 |
|
| 695 |
# Custom CSS
|
|
@@ -704,7 +924,9 @@ css = """
|
|
| 704 |
"""
|
| 705 |
|
| 706 |
# Create Gradio interface
|
| 707 |
-
with gr.Blocks(
|
|
|
|
|
|
|
| 708 |
gr.Markdown("""
|
| 709 |
# 🤖 Model Performance Comparison Tool
|
| 710 |
|
|
@@ -718,7 +940,7 @@ with gr.Blocks(title="🤖 Model Performance Comparison", theme=gr.themes.Soft()
|
|
| 718 |
- Detailed question-by-question results
|
| 719 |
- Performance charts and statistics
|
| 720 |
""")
|
| 721 |
-
|
| 722 |
with gr.Row():
|
| 723 |
with gr.Column(scale=2):
|
| 724 |
# Sample dataset selector
|
|
@@ -726,9 +948,9 @@ with gr.Blocks(title="🤖 Model Performance Comparison", theme=gr.themes.Soft()
|
|
| 726 |
choices=list(SAMPLE_DATASETS.keys()),
|
| 727 |
value="Custom (enter below)",
|
| 728 |
label="Choose sample dataset or enter your own",
|
| 729 |
-
interactive=True
|
| 730 |
)
|
| 731 |
-
|
| 732 |
# Dataset input
|
| 733 |
dataset_input = gr.Textbox(
|
| 734 |
label="Dataset (CSV/TSV format)",
|
|
@@ -739,16 +961,16 @@ Question,Correct Answer,Choice1,Choice2,Choice3
|
|
| 739 |
What is 2+2?,4,3,2,5
|
| 740 |
What is the capital of France?,Paris,London,Berlin,Paris""",
|
| 741 |
lines=8,
|
| 742 |
-
max_lines=15
|
| 743 |
)
|
| 744 |
-
|
| 745 |
gr.Markdown("""
|
| 746 |
**Format Requirements**:
|
| 747 |
- First line: header (will be ignored), leave empty if no header
|
| 748 |
- Each data line: Question, Correct Answer, Choice1, Choice2, Choice3
|
| 749 |
- Use commas or tabs as separators
|
| 750 |
""")
|
| 751 |
-
|
| 752 |
with gr.Column(scale=1):
|
| 753 |
# Model selection
|
| 754 |
with gr.Tabs():
|
|
@@ -757,9 +979,9 @@ What is the capital of France?,Paris,London,Berlin,Paris""",
|
|
| 757 |
choices=PREDEFINED_MODELS,
|
| 758 |
value=[PREDEFINED_MODELS[0]],
|
| 759 |
label="Select from popular models",
|
| 760 |
-
interactive=True
|
| 761 |
)
|
| 762 |
-
|
| 763 |
with gr.TabItem("➕ Custom Models"):
|
| 764 |
custom_models_input = gr.Textbox(
|
| 765 |
label="Custom HuggingFace Model Paths",
|
|
@@ -770,7 +992,7 @@ bigscience/bloom-560m""",
|
|
| 770 |
lines=5,
|
| 771 |
info="Add any HuggingFace model path. One model per line.",
|
| 772 |
)
|
| 773 |
-
|
| 774 |
gr.Markdown("""
|
| 775 |
**Examples of valid model paths**:
|
| 776 |
- `microsoft/DialoGPT-medium`
|
|
@@ -778,57 +1000,84 @@ bigscience/bloom-560m""",
|
|
| 778 |
- `facebook/opt-350m`
|
| 779 |
- Your own fine-tuned models!
|
| 780 |
""")
|
| 781 |
-
|
| 782 |
# Evaluate button
|
| 783 |
-
evaluate_btn = gr.Button(
|
| 784 |
-
|
| 785 |
-
variant="primary",
|
| 786 |
-
scale=1
|
| 787 |
-
)
|
| 788 |
-
|
| 789 |
gr.Markdown("""
|
| 790 |
**⚠️ Note**:
|
| 791 |
- Larger models require more GPU memory, currently we only run on CPU
|
| 792 |
- First run will download models (may take time)
|
| 793 |
- Models are cached for subsequent runs
|
| 794 |
""")
|
| 795 |
-
|
| 796 |
# Results section
|
| 797 |
with gr.Column(visible=True) as results_section:
|
| 798 |
gr.Markdown("## 📊 Results")
|
| 799 |
-
|
| 800 |
summary_output = gr.Markdown(
|
| 801 |
-
value="Results will appear here...",
|
| 802 |
-
label="Performance Summary"
|
| 803 |
)
|
| 804 |
-
|
| 805 |
with gr.Row():
|
| 806 |
accuracy_plot = gr.Plot(label="Accuracy Comparison")
|
| 807 |
confidence_plot = gr.Plot(label="Confidence Analysis")
|
| 808 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 809 |
detailed_results = gr.HTML(
|
| 810 |
value="<p>Detailed results will appear here...</p>",
|
| 811 |
-
label="Detailed Question-by-Question Results"
|
| 812 |
)
|
| 813 |
-
|
| 814 |
# Event handlers
|
| 815 |
def update_dataset_from_sample(sample_name):
|
| 816 |
if sample_name in SAMPLE_DATASETS:
|
| 817 |
return gr.update(value=SAMPLE_DATASETS[sample_name])
|
| 818 |
return gr.update()
|
| 819 |
-
|
| 820 |
sample_selector.change(
|
| 821 |
-
fn=update_dataset_from_sample,
|
| 822 |
-
inputs=sample_selector,
|
| 823 |
-
outputs=dataset_input
|
| 824 |
)
|
| 825 |
-
|
| 826 |
evaluate_btn.click(
|
| 827 |
fn=run_evaluation,
|
| 828 |
inputs=[dataset_input, predefined_selector, custom_models_input],
|
| 829 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 830 |
)
|
| 831 |
-
|
| 832 |
gr.Markdown("""
|
| 833 |
---
|
| 834 |
### About Model Evaluation
|
|
@@ -852,4 +1101,4 @@ bigscience/bloom-560m""",
|
|
| 852 |
""")
|
| 853 |
|
| 854 |
if __name__ == "__main__":
|
| 855 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
from collections import Counter
|
| 6 |
+
from typing import Any, Dict, List
|
| 7 |
+
|
| 8 |
import gradio as gr
|
| 9 |
import pandas as pd
|
| 10 |
import plotly.express as px
|
| 11 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import psutil
|
| 13 |
+
import torch
|
| 14 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 15 |
|
| 16 |
|
| 17 |
def get_memory_usage():
|
| 18 |
"""Return (gpu_mem_used_MB, gpu_mem_total_MB, ram_used_MB, ram_total_MB)"""
|
| 19 |
# System RAM
|
| 20 |
vm = psutil.virtual_memory()
|
| 21 |
+
ram_used_mb = vm.used / (1024**2)
|
| 22 |
+
ram_total_mb = vm.total / (1024**2)
|
| 23 |
|
| 24 |
# GPU memory
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
gpu_idx = torch.cuda.current_device()
|
| 27 |
torch.cuda.synchronize()
|
| 28 |
+
gpu_mem_alloc = torch.cuda.memory_allocated(gpu_idx) / (1024**2)
|
| 29 |
+
gpu_mem_reserved = torch.cuda.memory_reserved(gpu_idx) / (1024**2)
|
| 30 |
+
gpu_mem_total = torch.cuda.get_device_properties(gpu_idx).total_memory / (
|
| 31 |
+
1024**2
|
| 32 |
+
)
|
| 33 |
gpu_mem_used = max(gpu_mem_alloc, gpu_mem_reserved) # safe estimate
|
| 34 |
else:
|
| 35 |
gpu_mem_used = 0
|
|
|
|
| 44 |
|
| 45 |
# Model configurations - maps display names to HF model paths
|
| 46 |
PREDEFINED_MODELS = [
|
| 47 |
+
"meta-llama/Llama-3.2-1B",
|
| 48 |
+
"google/gemma-2-2b",
|
| 49 |
+
"Qwen/Qwen3-0.6B",
|
| 50 |
+
"Qwen/Qwen2.5-0.5B",
|
| 51 |
+
"Qwen/Qwen2.5-1.5B",
|
| 52 |
+
"bigscience/bloom-560m",
|
| 53 |
+
"CohereForAI/aya-expanse-8b",
|
| 54 |
+
"common-pile/comma-v0.1-2t",
|
| 55 |
+
"google/byt5-small",
|
| 56 |
+
"gsaltintas/supertoken_models-llama_gpt2",
|
| 57 |
+
"gsaltintas/supertoken_models-llama_google-gemma-2-2b",
|
| 58 |
]
|
| 59 |
# Global cache for loaded models
|
| 60 |
model_cache = {}
|
| 61 |
|
| 62 |
+
|
| 63 |
def parse_dataset(text):
|
| 64 |
"""Parse the input dataset text into structured questions"""
|
| 65 |
if not text.strip():
|
| 66 |
return [], "Please enter your dataset"
|
| 67 |
+
|
| 68 |
+
lines = text.strip().split("\n")
|
| 69 |
if len(lines) < 2:
|
| 70 |
return [], "Dataset must have at least a header and one question"
|
| 71 |
+
|
| 72 |
# Skip header and detect delimiter
|
| 73 |
first_data_line = lines[1] if len(lines) > 1 else lines[0]
|
| 74 |
+
delimiter = "\t" if "\t" in first_data_line else ","
|
| 75 |
+
|
| 76 |
questions = []
|
| 77 |
errors = []
|
| 78 |
+
|
| 79 |
for i, line in enumerate(lines[1:], 2): # Start from line 2 (after header)
|
| 80 |
line = line.strip()
|
| 81 |
if not line:
|
| 82 |
continue
|
| 83 |
+
|
| 84 |
parts = [part.strip().strip('"') for part in line.split(delimiter)]
|
| 85 |
+
|
| 86 |
if len(parts) < 5:
|
| 87 |
errors.append(f"Line {i}: Not enough columns (need 5, got {len(parts)})")
|
| 88 |
continue
|
| 89 |
+
|
| 90 |
question = {
|
| 91 |
+
"question": parts[0],
|
| 92 |
+
"correct_answer": parts[1],
|
| 93 |
+
"choices": [parts[2], parts[3], parts[4]],
|
| 94 |
}
|
| 95 |
+
|
| 96 |
# Ensure correct answer is in choices
|
| 97 |
+
if question["correct_answer"] not in question["choices"]:
|
| 98 |
+
question["choices"].append(question["correct_answer"])
|
| 99 |
+
|
| 100 |
questions.append(question)
|
| 101 |
+
|
| 102 |
+
error_msg = "\n".join(errors) if errors else ""
|
| 103 |
return questions, error_msg
|
| 104 |
|
| 105 |
+
|
| 106 |
def setup_tokenizer(model_path):
|
| 107 |
tokenizer_name = model_path
|
| 108 |
if "supertoken" in model_path:
|
|
|
|
| 109 |
import json
|
| 110 |
+
|
| 111 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
| 112 |
+
|
| 113 |
files = list_repo_files(model_path)
|
| 114 |
if "tokenizer_config.json" in files:
|
| 115 |
+
tokenizer_path = hf_hub_download(
|
| 116 |
+
repo_id=model_path, filename="tokenizer_config.json"
|
| 117 |
+
)
|
| 118 |
with open(tokenizer_path) as f:
|
| 119 |
tok_config = json.load(f)["data"]["tokenizer"]
|
| 120 |
if tok_config["name"] == "huggingface":
|
| 121 |
tokenizer_name = tok_config["path"]
|
| 122 |
# todo: tiktoken
|
| 123 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 124 |
+
tokenizer_name, trust_remote_code=True, legacy=True
|
| 125 |
+
)
|
| 126 |
return tokenizer
|
| 127 |
|
| 128 |
|
|
|
|
| 135 |
logger.info(f"Current GPU memory: {gpu_used:.1f}/{gpu_total:.1f} MB")
|
| 136 |
logger.info(f"Current RAM: {ram_used:.1f}/{ram_total:.1f} MB")
|
| 137 |
|
| 138 |
+
use_cache = (
|
| 139 |
+
not (
|
| 140 |
+
(gpu_total > 0 and gpu_used / gpu_total > 0.8)
|
| 141 |
+
or (ram_used / ram_total > 0.8)
|
| 142 |
+
)
|
| 143 |
+
or model_path in model_cache
|
| 144 |
+
)
|
| 145 |
if not use_cache:
|
| 146 |
logger.warning("High memory usage detected — disabling model cache.")
|
| 147 |
|
|
|
|
| 148 |
if use_cache and model_path in model_cache:
|
| 149 |
logger.info(f"Using cached model: {model_path}")
|
| 150 |
if progress_callback:
|
| 151 |
progress_callback(1.0, f"✅ Using cached model: {model_path}")
|
| 152 |
return model_cache[model_path]
|
| 153 |
+
|
| 154 |
try:
|
| 155 |
if progress_callback:
|
| 156 |
progress_callback(0.1, f"🔄 Starting to load model: {model_path}")
|
| 157 |
+
|
|
|
|
| 158 |
# Check if CUDA is available
|
| 159 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 160 |
logger.info(f"Loading model: {model_path} using device: {device}")
|
| 161 |
+
|
| 162 |
if progress_callback:
|
| 163 |
progress_callback(0.2, f"📥 Loading tokenizer for {model_path}...")
|
| 164 |
+
|
| 165 |
# Load tokenizer
|
| 166 |
tokenizer = setup_tokenizer(model_path)
|
| 167 |
+
|
| 168 |
# Add pad token if missing
|
| 169 |
if tokenizer.pad_token is None:
|
| 170 |
tokenizer.pad_token = tokenizer.eos_token
|
| 171 |
+
|
| 172 |
if progress_callback:
|
| 173 |
+
progress_callback(
|
| 174 |
+
0.5,
|
| 175 |
+
f"🧠 Loading model weights for {model_path}... (this may take a while)",
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
logger.info(os.getcwd())
|
| 179 |
# Load model with appropriate settings
|
| 180 |
model = AutoModelForCausalLM.from_pretrained(
|
| 181 |
model_path,
|
| 182 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 183 |
+
device_map="auto" if device == "cuda" else None,
|
| 184 |
trust_remote_code=True,
|
| 185 |
+
low_cpu_mem_usage=True,
|
| 186 |
)
|
| 187 |
+
|
| 188 |
+
model_info = {"tokenizer": tokenizer, "model": model, "device": device}
|
| 189 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
if use_cache:
|
| 191 |
model_cache[model_path] = model_info
|
| 192 |
+
|
| 193 |
if progress_callback:
|
| 194 |
progress_callback(1.0, f"✅ Successfully loaded model: {model_path}")
|
| 195 |
+
|
| 196 |
return model_info
|
| 197 |
+
|
| 198 |
except Exception as e:
|
| 199 |
import code
|
| 200 |
+
|
| 201 |
error_msg = f"❌ Error loading model {model_path}: {str(e)}"
|
| 202 |
logger.error(error_msg)
|
| 203 |
# code.interact(local=dict(globals(), **locals()))
|
| 204 |
if progress_callback:
|
| 205 |
progress_callback(0.0, error_msg)
|
| 206 |
return None
|
| 207 |
+
|
| 208 |
+
|
| 209 |
def calculate_choice_likelihood(model, tokenizer, question, choice):
|
| 210 |
"""Calculate the log-likelihood of the choice given the question prompt"""
|
| 211 |
try:
|
| 212 |
prompt = f"Question: {question}\nAnswer: "
|
| 213 |
+
prompt = question
|
| 214 |
full_text = f"{prompt} {choice}"
|
| 215 |
|
| 216 |
# Tokenize full input (prompt + answer)
|
| 217 |
+
input_ids = tokenizer.encode(
|
| 218 |
+
full_text, return_tensors="pt", add_special_tokens=False
|
| 219 |
+
).to(model.device)
|
| 220 |
+
prompt_ids = tokenizer.encode(
|
| 221 |
+
prompt, return_tensors="pt", add_special_tokens=False
|
| 222 |
+
).to(model.device)
|
| 223 |
|
| 224 |
if input_ids.size(1) <= prompt_ids.size(1):
|
| 225 |
logger.warning("Answer tokens are empty after tokenization.")
|
| 226 |
return float("-inf")
|
| 227 |
+
|
| 228 |
with torch.no_grad():
|
| 229 |
outputs = model(input_ids)
|
| 230 |
logits = outputs.logits
|
|
|
|
| 232 |
# Get logits for the answer tokens only
|
| 233 |
answer_len = input_ids.size(1) - prompt_ids.size(1)
|
| 234 |
target_ids = input_ids[:, -answer_len:]
|
| 235 |
+
logits = logits[
|
| 236 |
+
:, prompt_ids.size(1) - 1 : -1, :
|
| 237 |
+
] # shifted for next-token prediction
|
| 238 |
|
| 239 |
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
|
| 240 |
token_log_probs = log_probs.gather(2, target_ids.unsqueeze(-1)).squeeze(-1)
|
|
|
|
| 247 |
return float("-inf")
|
| 248 |
|
| 249 |
|
|
|
|
| 250 |
def evaluate_model_on_questions(model_path, questions, progress_callback=None):
|
| 251 |
"""Evaluate a single model on all questions using likelihood-based scoring"""
|
| 252 |
+
|
| 253 |
+
model_info = load_model_and_tokenizer(
|
| 254 |
+
model_path, progress_callback=progress_callback
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
if model_info is None:
|
| 258 |
+
return [{"error": f"Failed to load model {model_path}"}] * len(questions)
|
| 259 |
+
|
| 260 |
results = []
|
| 261 |
+
model = model_info["model"]
|
| 262 |
+
tokenizer = model_info["tokenizer"]
|
| 263 |
+
|
| 264 |
for i, question in enumerate(questions):
|
| 265 |
try:
|
| 266 |
# Calculate likelihood for each choice
|
| 267 |
choice_likelihoods = {}
|
| 268 |
choice_probs = {}
|
| 269 |
+
|
| 270 |
+
for choice in question["choices"]:
|
| 271 |
+
likelihood = calculate_choice_likelihood(
|
| 272 |
+
model, tokenizer, question["question"], choice
|
| 273 |
+
)
|
| 274 |
choice_likelihoods[choice] = likelihood
|
| 275 |
+
|
| 276 |
# Convert log probabilities to probabilities for confidence scoring
|
| 277 |
max_log_prob = max(choice_likelihoods.values())
|
| 278 |
+
choice_probs = {
|
| 279 |
+
choice: torch.exp(torch.tensor(log_prob - max_log_prob)).item()
|
| 280 |
+
for choice, log_prob in choice_likelihoods.items()
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
# Normalize probabilities
|
| 284 |
total_prob = sum(choice_probs.values())
|
| 285 |
if total_prob > 0:
|
| 286 |
+
choice_probs = {
|
| 287 |
+
choice: prob / total_prob for choice, prob in choice_probs.items()
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
# Select the choice with highest likelihood
|
| 291 |
+
predicted_choice = max(
|
| 292 |
+
choice_likelihoods.keys(), key=lambda x: choice_likelihoods[x]
|
| 293 |
+
)
|
| 294 |
+
is_correct = predicted_choice == question["correct_answer"]
|
| 295 |
+
|
| 296 |
# Confidence is the probability of the selected choice
|
| 297 |
confidence = choice_probs.get(predicted_choice, 0.0)
|
| 298 |
+
|
| 299 |
+
results.append(
|
| 300 |
+
{
|
| 301 |
+
"question_idx": i,
|
| 302 |
+
"predicted": predicted_choice,
|
| 303 |
+
"correct": is_correct,
|
| 304 |
+
"confidence": confidence,
|
| 305 |
+
"choice_likelihoods": choice_likelihoods,
|
| 306 |
+
"choice_probabilities": choice_probs,
|
| 307 |
+
"raw_response": f"Likelihoods: {choice_likelihoods}",
|
| 308 |
+
}
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
if progress_callback:
|
| 312 |
# Use remaining 80% for evaluation progress
|
| 313 |
evaluation_progress = 0.2 + (i + 1) / len(questions) * 0.8
|
| 314 |
+
progress_callback(
|
| 315 |
+
evaluation_progress,
|
| 316 |
+
f"🔍 Evaluating {model_path}: {i + 1}/{len(questions)} questions (likelihood-based)",
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
except Exception as e:
|
| 320 |
logger.error(f"Error evaluating question {i} with {model_path}: {str(e)}")
|
| 321 |
+
results.append(
|
| 322 |
+
{
|
| 323 |
+
"question_idx": i,
|
| 324 |
+
"predicted": question["choices"][0] if question["choices"] else "",
|
| 325 |
+
"correct": False,
|
| 326 |
+
"confidence": 0.0,
|
| 327 |
+
"choice_likelihoods": {},
|
| 328 |
+
"choice_probabilities": {},
|
| 329 |
+
"raw_response": f"Error: {str(e)}",
|
| 330 |
+
}
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
return results
|
| 334 |
|
| 335 |
+
|
| 336 |
+
def run_evaluation(
|
| 337 |
+
dataset_text, selected_predefined, custom_models_text="", progress=gr.Progress()
|
| 338 |
+
):
|
| 339 |
"""Main evaluation function"""
|
| 340 |
if not dataset_text.strip():
|
| 341 |
return (
|
|
|
|
| 343 |
"<p>No data provided</p>",
|
| 344 |
None,
|
| 345 |
None,
|
| 346 |
+
gr.update(visible=True),
|
| 347 |
+
"", # markdown_summary
|
| 348 |
+
"", # csv_summary
|
| 349 |
)
|
| 350 |
+
|
| 351 |
# Parse custom models
|
| 352 |
custom_models = []
|
| 353 |
if custom_models_text is None:
|
| 354 |
custom_models_text = ""
|
| 355 |
if custom_models_text.strip():
|
| 356 |
+
custom_models = [
|
| 357 |
+
model.strip()
|
| 358 |
+
for model in custom_models_text.strip().split("\n")
|
| 359 |
+
if model.strip()
|
| 360 |
+
]
|
| 361 |
+
|
| 362 |
# Combine selected models
|
| 363 |
all_models = []
|
| 364 |
+
|
| 365 |
# Add predefined models
|
| 366 |
all_models.extend(selected_predefined)
|
| 367 |
all_models.extend(custom_models)
|
| 368 |
+
|
| 369 |
if not all_models:
|
| 370 |
return (
|
| 371 |
"Please select at least one model or add custom models",
|
| 372 |
"<p>No models selected</p>",
|
| 373 |
None,
|
| 374 |
None,
|
| 375 |
+
gr.update(visible=False),
|
| 376 |
+
"",
|
| 377 |
+
"",
|
| 378 |
)
|
| 379 |
+
|
| 380 |
# Parse dataset
|
| 381 |
questions, parse_error = parse_dataset(dataset_text)
|
| 382 |
+
|
| 383 |
if parse_error:
|
| 384 |
return (
|
| 385 |
f"Dataset parsing error:\n{parse_error}",
|
| 386 |
"<p>Failed to parse dataset</p>",
|
| 387 |
None,
|
| 388 |
None,
|
| 389 |
+
gr.update(visible=True),
|
| 390 |
+
"",
|
| 391 |
+
"",
|
| 392 |
)
|
| 393 |
+
|
| 394 |
if not questions:
|
| 395 |
return (
|
| 396 |
"No valid questions found in dataset",
|
| 397 |
"<p>No questions to evaluate</p>",
|
| 398 |
None,
|
| 399 |
None,
|
| 400 |
+
gr.update(visible=True),
|
| 401 |
+
"",
|
| 402 |
+
"",
|
| 403 |
)
|
| 404 |
+
|
| 405 |
# Run evaluation
|
| 406 |
progress(0, "Starting evaluation...")
|
| 407 |
results = {}
|
| 408 |
total_steps = len(all_models) * len(questions)
|
| 409 |
current_step = 0
|
| 410 |
+
|
| 411 |
summary_md = create_summary_markdown({})
|
| 412 |
for model_path in all_models:
|
| 413 |
+
display_name = model_path.split("/")[-1] if "/" in model_path else model_path
|
| 414 |
try:
|
| 415 |
+
|
| 416 |
def model_progress(p, msg):
|
| 417 |
nonlocal current_step
|
| 418 |
current_step = int(p * len(questions))
|
| 419 |
overall_progress = current_step / total_steps
|
| 420 |
progress(overall_progress, msg)
|
| 421 |
+
|
| 422 |
+
model_results = evaluate_model_on_questions(
|
| 423 |
+
model_path, questions, model_progress
|
| 424 |
+
)
|
| 425 |
results[display_name] = model_results
|
| 426 |
+
|
| 427 |
except Exception as e:
|
| 428 |
logger.error(f"Failed to evaluate {display_name}: {str(e)}")
|
| 429 |
+
results[display_name] = [{"error": str(e)}] * len(questions)
|
| 430 |
+
|
| 431 |
# Clean up GPU memory
|
| 432 |
if torch.cuda.is_available():
|
| 433 |
torch.cuda.empty_cache()
|
| 434 |
gc.collect()
|
| 435 |
+
|
| 436 |
# Generate outputs
|
| 437 |
summary_stats = generate_summary_stats(questions, results)
|
| 438 |
summary_md = create_summary_markdown(summary_stats)
|
| 439 |
detailed_html = create_detailed_results_html(questions, results)
|
| 440 |
accuracy_chart = create_accuracy_chart(summary_stats)
|
| 441 |
confidence_chart = create_confidence_chart(results)
|
| 442 |
+
|
| 443 |
+
# Generate compact summaries
|
| 444 |
+
markdown_summary = generate_compact_summary_markdown(
|
| 445 |
+
questions, results, summary_stats
|
| 446 |
+
)
|
| 447 |
+
csv_summary = generate_csv_summary(questions, results, summary_stats)
|
| 448 |
+
|
| 449 |
return (
|
| 450 |
summary_md,
|
| 451 |
detailed_html,
|
| 452 |
accuracy_chart,
|
| 453 |
confidence_chart,
|
| 454 |
+
gr.update(visible=True),
|
| 455 |
+
markdown_summary,
|
| 456 |
+
csv_summary,
|
| 457 |
)
|
| 458 |
|
| 459 |
+
|
| 460 |
def generate_summary_stats(questions, results):
|
| 461 |
"""Generate summary statistics for all models"""
|
| 462 |
summary = {}
|
| 463 |
+
|
| 464 |
for model, model_results in results.items():
|
| 465 |
+
if not model_results or "error" in model_results[0]:
|
| 466 |
summary[model] = {
|
| 467 |
+
"accuracy": 0.0,
|
| 468 |
+
"correct": 0,
|
| 469 |
+
"total": len(questions),
|
| 470 |
+
"avg_confidence": 0.0,
|
| 471 |
+
"error": model_results[0].get("error", "Unknown error")
|
| 472 |
+
if model_results
|
| 473 |
+
else "No results",
|
| 474 |
}
|
| 475 |
continue
|
| 476 |
+
|
| 477 |
+
correct_count = sum(1 for r in model_results if r.get("correct", False))
|
| 478 |
total_count = len(model_results)
|
| 479 |
accuracy = correct_count / total_count if total_count > 0 else 0
|
| 480 |
+
|
| 481 |
# Calculate average confidence
|
| 482 |
+
avg_confidence = (
|
| 483 |
+
sum(r.get("confidence", 0) for r in model_results) / total_count
|
| 484 |
+
if total_count > 0
|
| 485 |
+
else 0
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
summary[model] = {
|
| 489 |
+
"accuracy": accuracy,
|
| 490 |
+
"correct": correct_count,
|
| 491 |
+
"total": total_count,
|
| 492 |
+
"avg_confidence": avg_confidence,
|
| 493 |
}
|
| 494 |
+
|
| 495 |
return summary
|
| 496 |
|
| 497 |
+
|
| 498 |
def create_summary_markdown(summary_stats):
|
| 499 |
"""Create markdown summary of results"""
|
| 500 |
if not summary_stats:
|
| 501 |
return "No results available"
|
| 502 |
+
|
| 503 |
# Sort by accuracy
|
| 504 |
+
sorted_models = sorted(
|
| 505 |
+
summary_stats.items(), key=lambda x: x[1]["accuracy"], reverse=True
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
lines = ["## 🏆 Model Performance Summary\n"]
|
| 509 |
+
|
| 510 |
for i, (model, stats) in enumerate(sorted_models):
|
| 511 |
+
if "error" in stats:
|
| 512 |
lines.append(f"❌ **{model}**: Error - {stats['error']}")
|
| 513 |
continue
|
| 514 |
+
|
| 515 |
+
accuracy_pct = stats["accuracy"] * 100
|
| 516 |
+
medal = "🥇" if i == 0 else "🥈" if i == 1 else "🥉" if i == 2 else f"{i + 1}."
|
| 517 |
+
|
| 518 |
lines.append(
|
| 519 |
f"{medal} **{model}**: {accuracy_pct:.1f}% "
|
| 520 |
f"({stats['correct']}/{stats['total']} correct, "
|
| 521 |
f"avg confidence: {stats['avg_confidence']:.2f})"
|
| 522 |
)
|
| 523 |
+
|
| 524 |
return "\n".join(lines)
|
| 525 |
|
| 526 |
+
|
| 527 |
def create_detailed_results_html(questions, results):
|
| 528 |
"""Create detailed HTML results for each question"""
|
| 529 |
if not questions or not results:
|
| 530 |
return "<p>No detailed results available</p>"
|
| 531 |
+
|
| 532 |
+
html_parts = [
|
| 533 |
+
"""
|
| 534 |
<style>
|
| 535 |
.question-card {
|
| 536 |
background: white;
|
|
|
|
| 617 |
font-family: monospace;
|
| 618 |
}
|
| 619 |
</style>
|
| 620 |
+
"""
|
| 621 |
+
]
|
| 622 |
+
|
| 623 |
for q_idx, question in enumerate(questions):
|
| 624 |
html_parts.append(f"""
|
| 625 |
<div class="question-card">
|
| 626 |
<div class="question-header">
|
| 627 |
<span class="question-number">Q{q_idx + 1}</span>
|
| 628 |
</div>
|
| 629 |
+
<div class="question-text">{question["question"]}</div>
|
| 630 |
<div class="choices">
|
| 631 |
<strong>Choices:</strong><br>
|
| 632 |
+
{" | ".join(f"{chr(65 + i)}) {choice}" for i, choice in enumerate(question["choices"]))}
|
| 633 |
</div>
|
| 634 |
<div class="correct-answer">
|
| 635 |
+
<strong>✓ Correct Answer:</strong> {question["correct_answer"]}
|
| 636 |
</div>
|
| 637 |
<div class="model-results">
|
| 638 |
""")
|
| 639 |
+
|
| 640 |
# Add results for each model
|
| 641 |
for model, model_results in results.items():
|
| 642 |
if q_idx < len(model_results):
|
| 643 |
result = model_results[q_idx]
|
| 644 |
+
|
| 645 |
+
if "error" in result:
|
| 646 |
html_parts.append(f"""
|
| 647 |
<div class="model-result result-error">
|
| 648 |
<div>⚠️ {model}</div>
|
| 649 |
<div style="font-size: 12px; margin-top: 4px;">
|
| 650 |
Error occurred
|
| 651 |
</div>
|
| 652 |
+
<div class="raw-response">{result.get("raw_response", "Unknown error")}</div>
|
| 653 |
</div>
|
| 654 |
""")
|
| 655 |
else:
|
| 656 |
+
result_class = (
|
| 657 |
+
"result-correct"
|
| 658 |
+
if result.get("correct", False)
|
| 659 |
+
else "result-incorrect"
|
| 660 |
+
)
|
| 661 |
+
icon = "✅" if result.get("correct", False) else "❌"
|
| 662 |
+
|
| 663 |
html_parts.append(f"""
|
| 664 |
<div class="model-result {result_class}">
|
| 665 |
<div>{icon} {model}</div>
|
| 666 |
<div style="font-size: 12px; margin-top: 4px;">
|
| 667 |
+
"{result.get("predicted", "No prediction")}"
|
| 668 |
</div>
|
| 669 |
+
<div class="raw-response">Raw: "{result.get("raw_response", "")}"</div>
|
| 670 |
</div>
|
| 671 |
""")
|
| 672 |
+
|
| 673 |
html_parts.append("""
|
| 674 |
</div>
|
| 675 |
</div>
|
| 676 |
""")
|
| 677 |
+
|
| 678 |
return "".join(html_parts)
|
| 679 |
|
| 680 |
+
|
| 681 |
def create_accuracy_chart(summary_stats):
|
| 682 |
"""Create accuracy comparison chart"""
|
| 683 |
if not summary_stats:
|
| 684 |
return None
|
| 685 |
+
|
| 686 |
models = []
|
| 687 |
accuracies = []
|
| 688 |
+
|
| 689 |
for model, stats in summary_stats.items():
|
| 690 |
+
if "error" not in stats:
|
| 691 |
models.append(model)
|
| 692 |
+
accuracies.append(stats["accuracy"] * 100)
|
| 693 |
+
|
| 694 |
if not models:
|
| 695 |
return None
|
| 696 |
+
|
| 697 |
+
fig = go.Figure(
|
| 698 |
+
data=[
|
| 699 |
+
go.Bar(
|
| 700 |
+
x=models,
|
| 701 |
+
y=accuracies,
|
| 702 |
+
marker_color="lightblue",
|
| 703 |
+
text=[f"{acc:.1f}%" for acc in accuracies],
|
| 704 |
+
textposition="auto",
|
| 705 |
+
)
|
| 706 |
+
]
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
fig.update_layout(
|
| 710 |
title="Model Accuracy Comparison",
|
| 711 |
xaxis_title="Models",
|
| 712 |
yaxis_title="Accuracy (%)",
|
| 713 |
template="plotly_white",
|
| 714 |
+
showlegend=False,
|
| 715 |
)
|
| 716 |
+
|
| 717 |
return fig
|
| 718 |
|
| 719 |
+
|
| 720 |
def create_confidence_chart(results):
|
| 721 |
"""Create confidence distribution chart"""
|
| 722 |
if not results:
|
| 723 |
return None
|
| 724 |
+
|
| 725 |
data = []
|
| 726 |
for model, model_results in results.items():
|
| 727 |
for result in model_results:
|
| 728 |
+
if "error" not in result and "confidence" in result:
|
| 729 |
+
data.append(
|
| 730 |
+
{
|
| 731 |
+
"Model": model,
|
| 732 |
+
"Confidence": result["confidence"],
|
| 733 |
+
"Correct": "Correct"
|
| 734 |
+
if result.get("correct", False)
|
| 735 |
+
else "Incorrect",
|
| 736 |
+
}
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
if not data:
|
| 740 |
return None
|
| 741 |
+
|
| 742 |
df = pd.DataFrame(data)
|
| 743 |
+
|
| 744 |
fig = px.box(
|
| 745 |
df,
|
| 746 |
+
x="Model",
|
| 747 |
+
y="Confidence",
|
| 748 |
+
color="Correct",
|
| 749 |
title="Confidence Distribution by Model and Correctness",
|
| 750 |
+
template="plotly_white",
|
| 751 |
)
|
| 752 |
+
|
| 753 |
return fig
|
| 754 |
|
| 755 |
+
|
| 756 |
+
def generate_compact_summary_markdown(questions, results, summary_stats):
|
| 757 |
+
"""Generate a compact markdown summary table for copy-pasting"""
|
| 758 |
+
logger.info("compaaact summary")
|
| 759 |
+
if not summary_stats or not questions or not results:
|
| 760 |
+
return "No data available for summary"
|
| 761 |
+
|
| 762 |
+
lines = ["# Model Performance Summary\n"]
|
| 763 |
+
|
| 764 |
+
# Accuracy Summary Table
|
| 765 |
+
lines.append("## 📊 Accuracy Summary\n")
|
| 766 |
+
lines.append("| Rank | Model | Accuracy | Correct | Total | Avg Confidence |")
|
| 767 |
+
lines.append("|------|-------|----------|---------|-------|----------------|")
|
| 768 |
+
|
| 769 |
+
# Sort by accuracy
|
| 770 |
+
sorted_models = sorted(
|
| 771 |
+
summary_stats.items(), key=lambda x: x[1].get("accuracy", 0), reverse=True
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
for i, (model, stats) in enumerate(sorted_models):
|
| 775 |
+
if "error" in stats:
|
| 776 |
+
lines.append(f"| {i + 1} | {model} | ERROR | - | - | - |")
|
| 777 |
+
else:
|
| 778 |
+
accuracy_pct = stats["accuracy"] * 100
|
| 779 |
+
lines.append(
|
| 780 |
+
f"| {i + 1} | {model} | {accuracy_pct:.1f}% | {stats['correct']} | {stats['total']} | {stats['avg_confidence']:.3f} |"
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
lines.append("\n")
|
| 784 |
+
|
| 785 |
+
# Detailed Results Table
|
| 786 |
+
lines.append("## 📋 Detailed Question Results\n")
|
| 787 |
+
|
| 788 |
+
# Get all model names for header
|
| 789 |
+
model_names = list(results.keys())
|
| 790 |
+
header = "| Q# | Question | Correct Answer |" + "".join(
|
| 791 |
+
[f" {model} |" for model in model_names]
|
| 792 |
+
)
|
| 793 |
+
separator = "|" + "|".join(
|
| 794 |
+
["-" * (len(col.strip()) + 2) for col in header.split("|")[1:]]
|
| 795 |
+
)
|
| 796 |
+
|
| 797 |
+
lines.append(header)
|
| 798 |
+
lines.append(separator)
|
| 799 |
+
|
| 800 |
+
for q_idx, question in enumerate(questions):
|
| 801 |
+
# Truncate long questions for table readability
|
| 802 |
+
question_text = question["question"]
|
| 803 |
+
if len(question_text) > 50:
|
| 804 |
+
question_text = question_text[:47] + "..."
|
| 805 |
+
|
| 806 |
+
row = f"| {q_idx + 1} | {question_text} | {question['correct_answer']} |"
|
| 807 |
+
|
| 808 |
+
for model in model_names:
|
| 809 |
+
if q_idx < len(results[model]) and "error" not in results[model][q_idx]:
|
| 810 |
+
result = results[model][q_idx]
|
| 811 |
+
predicted = result.get("predicted", "N/A")
|
| 812 |
+
is_correct = result.get("correct", False)
|
| 813 |
+
confidence = result.get("confidence", 0)
|
| 814 |
+
|
| 815 |
+
# Add emoji for visual feedback
|
| 816 |
+
status_emoji = "✅" if is_correct else "❌"
|
| 817 |
+
row += f" {status_emoji} {predicted} ({confidence:.2f}) |"
|
| 818 |
+
else:
|
| 819 |
+
row += " ⚠️ ERROR |"
|
| 820 |
+
|
| 821 |
+
lines.append(row)
|
| 822 |
+
|
| 823 |
+
lines.append("\n")
|
| 824 |
+
|
| 825 |
+
# Legend
|
| 826 |
+
lines.append("### Legend")
|
| 827 |
+
lines.append("- ✅ = Correct answer")
|
| 828 |
+
lines.append("- ❌ = Incorrect answer")
|
| 829 |
+
lines.append("- ⚠️ = Error occurred")
|
| 830 |
+
lines.append("- Numbers in parentheses = Confidence score")
|
| 831 |
+
logger.info("\n".join(lines))
|
| 832 |
+
return "\n".join(lines)
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
def generate_csv_summary(questions, results, summary_stats):
|
| 836 |
+
"""Generate CSV format summary"""
|
| 837 |
+
# TODO: add CSV file download if necessary
|
| 838 |
+
if not summary_stats or not questions or not results:
|
| 839 |
+
return "No data available"
|
| 840 |
+
|
| 841 |
+
lines = []
|
| 842 |
+
|
| 843 |
+
# Accuracy summary header
|
| 844 |
+
lines.append("# ACCURACY SUMMARY")
|
| 845 |
+
lines.append("Rank,Model,Accuracy_Percent,Correct,Total,Avg_Confidence")
|
| 846 |
+
|
| 847 |
+
sorted_models = sorted(
|
| 848 |
+
summary_stats.items(), key=lambda x: x[1].get("accuracy", 0), reverse=True
|
| 849 |
+
)
|
| 850 |
+
for i, (model, stats) in enumerate(sorted_models):
|
| 851 |
+
if "error" in stats:
|
| 852 |
+
lines.append(f"{i + 1},{model},ERROR,-,-,-")
|
| 853 |
+
else:
|
| 854 |
+
accuracy_pct = stats["accuracy"] * 100
|
| 855 |
+
lines.append(
|
| 856 |
+
f"{i + 1},{model},{accuracy_pct:.1f},{stats['correct']},{stats['total']},{stats['avg_confidence']:.3f}"
|
| 857 |
+
)
|
| 858 |
+
|
| 859 |
+
lines.append("")
|
| 860 |
+
lines.append("# DETAILED RESULTS")
|
| 861 |
+
|
| 862 |
+
# Header for detailed results
|
| 863 |
+
model_names = list(results.keys())
|
| 864 |
+
header = "Question_ID,Question,Correct_Answer," + ",".join(
|
| 865 |
+
[
|
| 866 |
+
f"{model}_Predicted,{model}_Correct,{model}_Confidence"
|
| 867 |
+
for model in model_names
|
| 868 |
+
]
|
| 869 |
+
)
|
| 870 |
+
lines.append(header)
|
| 871 |
+
|
| 872 |
+
# Detailed results
|
| 873 |
+
for q_idx, question in enumerate(questions):
|
| 874 |
+
row = f'{q_idx + 1},"{question["question"]}",{question["correct_answer"]}'
|
| 875 |
+
|
| 876 |
+
for model in model_names:
|
| 877 |
+
if q_idx < len(results[model]) and "error" not in results[model][q_idx]:
|
| 878 |
+
result = results[model][q_idx]
|
| 879 |
+
predicted = result.get("predicted", "N/A")
|
| 880 |
+
is_correct = str(result.get("correct", False))
|
| 881 |
+
confidence = result.get("confidence", 0)
|
| 882 |
+
row += f",{predicted},{is_correct},{confidence:.3f}"
|
| 883 |
+
else:
|
| 884 |
+
row += ",ERROR,FALSE,0"
|
| 885 |
+
|
| 886 |
+
lines.append(row)
|
| 887 |
+
|
| 888 |
+
return "\n".join(lines)
|
| 889 |
+
|
| 890 |
+
|
| 891 |
# Sample datasets for quick testing
|
| 892 |
SAMPLE_DATASETS = {
|
| 893 |
"Custom (enter below)": "",
|
|
|
|
| 900 |
What is 5*3?,15,12,16,18
|
| 901 |
What is 10-7?,3,7,4,2
|
| 902 |
What is 8/2?,4,3,2,5""",
|
|
|
|
| 903 |
"World Capitals": """Question,Correct Answer,Choice1,Choice2,Choice3
|
| 904 |
What is the capital of France?,Paris,London,Berlin,Rome
|
| 905 |
What is the capital of Japan?,Tokyo,Seoul,Beijing,Bangkok
|
| 906 |
What is the capital of Brazil?,Brasília,Rio de Janeiro,São Paulo,Salvador
|
| 907 |
What is the capital of Australia?,Canberra,Sydney,Melbourne,Perth""",
|
|
|
|
| 908 |
"Science Quiz": """Question,Correct Answer,Choice1,Choice2,Choice3
|
| 909 |
What is the chemical symbol for gold?,Au,Ag,Ca,K
|
| 910 |
Which planet is closest to the Sun?,Mercury,Venus,Earth,Mars
|
| 911 |
What is the speed of light?,299792458 m/s,300000000 m/s,2992458 m/s,299000000 m/s
|
| 912 |
+
What gas do plants absorb from the atmosphere?,Carbon dioxide,Oxygen,Nitrogen,Hydrogen""",
|
| 913 |
}
|
| 914 |
|
| 915 |
# Custom CSS
|
|
|
|
| 924 |
"""
|
| 925 |
|
| 926 |
# Create Gradio interface
|
| 927 |
+
with gr.Blocks(
|
| 928 |
+
title="🤖 Model Performance Comparison", theme=gr.themes.Soft(), css=css
|
| 929 |
+
) as demo:
|
| 930 |
gr.Markdown("""
|
| 931 |
# 🤖 Model Performance Comparison Tool
|
| 932 |
|
|
|
|
| 940 |
- Detailed question-by-question results
|
| 941 |
- Performance charts and statistics
|
| 942 |
""")
|
| 943 |
+
|
| 944 |
with gr.Row():
|
| 945 |
with gr.Column(scale=2):
|
| 946 |
# Sample dataset selector
|
|
|
|
| 948 |
choices=list(SAMPLE_DATASETS.keys()),
|
| 949 |
value="Custom (enter below)",
|
| 950 |
label="Choose sample dataset or enter your own",
|
| 951 |
+
interactive=True,
|
| 952 |
)
|
| 953 |
+
|
| 954 |
# Dataset input
|
| 955 |
dataset_input = gr.Textbox(
|
| 956 |
label="Dataset (CSV/TSV format)",
|
|
|
|
| 961 |
What is 2+2?,4,3,2,5
|
| 962 |
What is the capital of France?,Paris,London,Berlin,Paris""",
|
| 963 |
lines=8,
|
| 964 |
+
max_lines=15,
|
| 965 |
)
|
| 966 |
+
|
| 967 |
gr.Markdown("""
|
| 968 |
**Format Requirements**:
|
| 969 |
- First line: header (will be ignored), leave empty if no header
|
| 970 |
- Each data line: Question, Correct Answer, Choice1, Choice2, Choice3
|
| 971 |
- Use commas or tabs as separators
|
| 972 |
""")
|
| 973 |
+
|
| 974 |
with gr.Column(scale=1):
|
| 975 |
# Model selection
|
| 976 |
with gr.Tabs():
|
|
|
|
| 979 |
choices=PREDEFINED_MODELS,
|
| 980 |
value=[PREDEFINED_MODELS[0]],
|
| 981 |
label="Select from popular models",
|
| 982 |
+
interactive=True,
|
| 983 |
)
|
| 984 |
+
|
| 985 |
with gr.TabItem("➕ Custom Models"):
|
| 986 |
custom_models_input = gr.Textbox(
|
| 987 |
label="Custom HuggingFace Model Paths",
|
|
|
|
| 992 |
lines=5,
|
| 993 |
info="Add any HuggingFace model path. One model per line.",
|
| 994 |
)
|
| 995 |
+
|
| 996 |
gr.Markdown("""
|
| 997 |
**Examples of valid model paths**:
|
| 998 |
- `microsoft/DialoGPT-medium`
|
|
|
|
| 1000 |
- `facebook/opt-350m`
|
| 1001 |
- Your own fine-tuned models!
|
| 1002 |
""")
|
| 1003 |
+
|
| 1004 |
# Evaluate button
|
| 1005 |
+
evaluate_btn = gr.Button("⚡ Run Evaluation", variant="primary", scale=1)
|
| 1006 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1007 |
gr.Markdown("""
|
| 1008 |
**⚠️ Note**:
|
| 1009 |
- Larger models require more GPU memory, currently we only run on CPU
|
| 1010 |
- First run will download models (may take time)
|
| 1011 |
- Models are cached for subsequent runs
|
| 1012 |
""")
|
| 1013 |
+
|
| 1014 |
# Results section
|
| 1015 |
with gr.Column(visible=True) as results_section:
|
| 1016 |
gr.Markdown("## 📊 Results")
|
| 1017 |
+
|
| 1018 |
summary_output = gr.Markdown(
|
| 1019 |
+
value="Results will appear here...", label="Performance Summary"
|
|
|
|
| 1020 |
)
|
| 1021 |
+
|
| 1022 |
with gr.Row():
|
| 1023 |
accuracy_plot = gr.Plot(label="Accuracy Comparison")
|
| 1024 |
confidence_plot = gr.Plot(label="Confidence Analysis")
|
| 1025 |
+
|
| 1026 |
+
# NEW: Export Section
|
| 1027 |
+
gr.Markdown("## 📥 Export Results")
|
| 1028 |
+
|
| 1029 |
+
with gr.Row():
|
| 1030 |
+
with gr.Column():
|
| 1031 |
+
gr.Markdown("### 📋 Markdown Table Format")
|
| 1032 |
+
markdown_summary_output = gr.Textbox(
|
| 1033 |
+
label="Markdown Summary (Copy & Paste Ready)",
|
| 1034 |
+
lines=15,
|
| 1035 |
+
max_lines=25,
|
| 1036 |
+
show_copy_button=True,
|
| 1037 |
+
interactive=False,
|
| 1038 |
+
value="",
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
with gr.Column():
|
| 1042 |
+
gr.Markdown("### 📊 CSV Format")
|
| 1043 |
+
csv_summary_output = gr.Textbox(
|
| 1044 |
+
label="CSV Summary (Copy & Paste Ready)",
|
| 1045 |
+
lines=15,
|
| 1046 |
+
max_lines=25,
|
| 1047 |
+
show_copy_button=True,
|
| 1048 |
+
interactive=False,
|
| 1049 |
+
value="",
|
| 1050 |
+
)
|
| 1051 |
+
|
| 1052 |
detailed_results = gr.HTML(
|
| 1053 |
value="<p>Detailed results will appear here...</p>",
|
| 1054 |
+
label="Detailed Question-by-Question Results",
|
| 1055 |
)
|
| 1056 |
+
|
| 1057 |
# Event handlers
|
| 1058 |
def update_dataset_from_sample(sample_name):
|
| 1059 |
if sample_name in SAMPLE_DATASETS:
|
| 1060 |
return gr.update(value=SAMPLE_DATASETS[sample_name])
|
| 1061 |
return gr.update()
|
| 1062 |
+
|
| 1063 |
sample_selector.change(
|
| 1064 |
+
fn=update_dataset_from_sample, inputs=sample_selector, outputs=dataset_input
|
|
|
|
|
|
|
| 1065 |
)
|
| 1066 |
+
|
| 1067 |
evaluate_btn.click(
|
| 1068 |
fn=run_evaluation,
|
| 1069 |
inputs=[dataset_input, predefined_selector, custom_models_input],
|
| 1070 |
+
outputs=[
|
| 1071 |
+
summary_output,
|
| 1072 |
+
detailed_results,
|
| 1073 |
+
accuracy_plot,
|
| 1074 |
+
confidence_plot,
|
| 1075 |
+
results_section,
|
| 1076 |
+
markdown_summary_output,
|
| 1077 |
+
csv_summary_output,
|
| 1078 |
+
],
|
| 1079 |
)
|
| 1080 |
+
|
| 1081 |
gr.Markdown("""
|
| 1082 |
---
|
| 1083 |
### About Model Evaluation
|
|
|
|
| 1101 |
""")
|
| 1102 |
|
| 1103 |
if __name__ == "__main__":
|
| 1104 |
+
demo.launch()
|