Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,126 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
MAX_IMAGE_SIZE = 1024
|
| 20 |
|
| 21 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
examples = [
|
| 41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 42 |
-
"An astronaut riding a green horse",
|
| 43 |
-
"A delicious ceviche cheesecake slice",
|
| 44 |
-
]
|
| 45 |
|
| 46 |
css="""
|
| 47 |
#col-container {
|
|
@@ -59,33 +138,36 @@ with gr.Blocks(css=css) as demo:
|
|
| 59 |
|
| 60 |
with gr.Column(elem_id="col-container"):
|
| 61 |
gr.Markdown(f"""
|
| 62 |
-
# Text-to-Image
|
|
|
|
| 63 |
Currently running on {power_device}.
|
| 64 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
with gr.Row():
|
| 67 |
|
| 68 |
-
prompt = gr.Text(
|
| 69 |
-
label="Prompt",
|
| 70 |
-
show_label=False,
|
| 71 |
-
max_lines=1,
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
-
container=False,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
run_button = gr.Button("Run", scale=0)
|
| 77 |
|
| 78 |
result = gr.Image(label="Result", show_label=False)
|
| 79 |
|
| 80 |
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
seed = gr.Slider(
|
| 90 |
label="Seed",
|
| 91 |
minimum=0,
|
|
@@ -103,7 +185,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 103 |
minimum=256,
|
| 104 |
maximum=MAX_IMAGE_SIZE,
|
| 105 |
step=32,
|
| 106 |
-
value=
|
| 107 |
)
|
| 108 |
|
| 109 |
height = gr.Slider(
|
|
@@ -111,7 +193,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 111 |
minimum=256,
|
| 112 |
maximum=MAX_IMAGE_SIZE,
|
| 113 |
step=32,
|
| 114 |
-
value=
|
| 115 |
)
|
| 116 |
|
| 117 |
with gr.Row():
|
|
@@ -119,28 +201,32 @@ with gr.Blocks(css=css) as demo:
|
|
| 119 |
guidance_scale = gr.Slider(
|
| 120 |
label="Guidance scale",
|
| 121 |
minimum=0.0,
|
| 122 |
-
maximum=
|
| 123 |
step=0.1,
|
| 124 |
-
value=
|
| 125 |
)
|
| 126 |
|
| 127 |
num_inference_steps = gr.Slider(
|
| 128 |
label="Number of inference steps",
|
| 129 |
minimum=1,
|
| 130 |
-
maximum=
|
| 131 |
step=1,
|
| 132 |
-
value=
|
| 133 |
)
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
run_button.click(
|
| 141 |
fn = infer,
|
| 142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 143 |
-
outputs = [result]
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
from diffusers import DiffusionPipeline
|
| 6 |
import torch
|
| 7 |
+
import threading
|
| 8 |
+
from PIL import Image
|
| 9 |
|
| 10 |
+
MODEL_ID = "cagliostrolab/animagine-xl-3.1"
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
if torch.cuda.is_available():
|
| 14 |
torch.cuda.max_memory_allocated(device=device)
|
| 15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 16 |
+
MODEL_ID,
|
| 17 |
+
torch_dtype=torch.float16,
|
| 18 |
+
use_safetensors=True,
|
| 19 |
+
)
|
| 20 |
+
else:
|
| 21 |
+
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, use_safetensors=True)
|
| 22 |
+
pipe = pipe.to(device)
|
| 23 |
|
| 24 |
MAX_SEED = np.iinfo(np.int32).max
|
| 25 |
+
MAX_IMAGE_SIZE = 1024 + 512
|
| 26 |
|
| 27 |
+
def latents_to_rgb(latents):
|
| 28 |
+
weights = (
|
| 29 |
+
(60, -60, 25, -70),
|
| 30 |
+
(60, -5, 15, -50),
|
| 31 |
+
(60, 10, -5, -35)
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
weights_tensor = torch.tensor(weights, dtype=latents.dtype, device=latents.device).T
|
| 35 |
+
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype, device=latents.device)
|
| 36 |
+
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.view(-1, 1, 1)
|
| 37 |
+
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
|
| 38 |
+
image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions
|
| 39 |
+
|
| 40 |
+
pil_image = Image.fromarray(image_array)
|
| 41 |
+
|
| 42 |
+
resized_image = pil_image.resize((pil_image.size[0] * 2, pil_image.size[1] * 2), Image.LANCZOS) # Resize 128x128 * ...
|
| 43 |
+
return resized_image
|
| 44 |
+
|
| 45 |
+
class BaseGenerator:
|
| 46 |
+
def __init__(self, pipe):
|
| 47 |
+
self.pipe = pipe
|
| 48 |
+
self.image = None
|
| 49 |
+
self.new_image_event = threading.Event()
|
| 50 |
+
self.generation_finished = threading.Event()
|
| 51 |
+
self.intermediate_image_concurrency(5)
|
| 52 |
+
|
| 53 |
+
def intermediate_image_concurrency(self, concurrency):
|
| 54 |
+
self.concurrency = concurrency
|
| 55 |
|
| 56 |
+
def decode_tensors(self, pipe, step, timestep, callback_kwargs):
|
| 57 |
+
latents = callback_kwargs["latents"]
|
| 58 |
+
if step % self.concurrency == 0: # every how many steps
|
| 59 |
+
print(step)
|
| 60 |
+
self.image = latents_to_rgb(latents)
|
| 61 |
+
self.new_image_event.set() # Signal that a new image is available
|
| 62 |
+
return callback_kwargs
|
| 63 |
+
|
| 64 |
+
def show_images(self):
|
| 65 |
+
while not self.generation_finished.is_set() or self.new_image_event.is_set():
|
| 66 |
+
self.new_image_event.wait() # Wait for a new image
|
| 67 |
+
self.new_image_event.clear() # Clear the event flag
|
| 68 |
+
|
| 69 |
+
if self.image:
|
| 70 |
+
yield self.image # Yield the new image
|
| 71 |
+
|
| 72 |
+
def generate_images(self, **kwargs):
|
| 73 |
+
if kwargs.get('randomize_seed', False):
|
| 74 |
+
kwargs['seed'] = random.randint(0, MAX_SEED)
|
| 75 |
+
|
| 76 |
+
generator = torch.Generator().manual_seed(kwargs['seed'])
|
| 77 |
|
| 78 |
+
self.image = None
|
| 79 |
+
self.image = self.pipe(
|
| 80 |
+
height=kwargs['height'],
|
| 81 |
+
width=kwargs['width'],
|
| 82 |
+
prompt=kwargs['prompt'],
|
| 83 |
+
negative_prompt=kwargs['negative_prompt'],
|
| 84 |
+
guidance_scale=kwargs['guidance_scale'],
|
| 85 |
+
num_inference_steps=kwargs['num_inference_steps'],
|
| 86 |
+
generator=generator,
|
| 87 |
+
callback_on_step_end=self.decode_tensors,
|
| 88 |
+
callback_on_step_end_tensor_inputs=["latents"],
|
| 89 |
+
).images[0]
|
| 90 |
+
print("finish")
|
| 91 |
+
self.new_image_event.set() # Result image
|
| 92 |
+
self.generation_finished.set() # Signal that generation is finished
|
| 93 |
+
|
| 94 |
+
def stream(self, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 95 |
+
self.generation_finished.clear()
|
| 96 |
+
threading.Thread(target=self.generate_images, args=(), kwargs=dict(
|
| 97 |
+
prompt=prompt,
|
| 98 |
+
negative_prompt=negative_prompt,
|
| 99 |
+
seed=seed,
|
| 100 |
+
randomize_seed=randomize_seed,
|
| 101 |
+
width=width,
|
| 102 |
+
height=height,
|
| 103 |
+
guidance_scale=guidance_scale,
|
| 104 |
+
num_inference_steps=num_inference_steps
|
| 105 |
+
)).start()
|
| 106 |
+
return self.show_images()
|
| 107 |
+
|
| 108 |
+
image_generator = BaseGenerator(pipe)
|
| 109 |
+
|
| 110 |
+
@spaces.GPU
|
| 111 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency):
|
| 112 |
+
|
| 113 |
+
image_generator.intermediate_image_concurrency(concurrency)
|
| 114 |
+
|
| 115 |
+
stream = image_generator.stream(
|
| 116 |
+
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
yield None
|
| 120 |
+
|
| 121 |
+
for image in stream:
|
| 122 |
+
yield image
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
css="""
|
| 126 |
#col-container {
|
|
|
|
| 138 |
|
| 139 |
with gr.Column(elem_id="col-container"):
|
| 140 |
gr.Markdown(f"""
|
| 141 |
+
# Text-to-Image: Display each generation step
|
| 142 |
+
Gradio template for displaying preview images during generation steps
|
| 143 |
Currently running on {power_device}.
|
| 144 |
""")
|
| 145 |
+
|
| 146 |
+
prompt = gr.Text(
|
| 147 |
+
label="Prompt",
|
| 148 |
+
show_label=False,
|
| 149 |
+
max_lines=1,
|
| 150 |
+
placeholder="Enter your prompt",
|
| 151 |
+
container=False,
|
| 152 |
+
value="1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night",
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
negative_prompt = gr.Text(
|
| 156 |
+
label="Negative prompt",
|
| 157 |
+
max_lines=1,
|
| 158 |
+
placeholder="Enter a negative prompt",
|
| 159 |
+
visible=True,
|
| 160 |
+
value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
|
| 161 |
+
)
|
| 162 |
|
| 163 |
with gr.Row():
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
run_button = gr.Button("Run", scale=0)
|
| 166 |
|
| 167 |
result = gr.Image(label="Result", show_label=False)
|
| 168 |
|
| 169 |
with gr.Accordion("Advanced Settings", open=False):
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
seed = gr.Slider(
|
| 172 |
label="Seed",
|
| 173 |
minimum=0,
|
|
|
|
| 185 |
minimum=256,
|
| 186 |
maximum=MAX_IMAGE_SIZE,
|
| 187 |
step=32,
|
| 188 |
+
value=832,
|
| 189 |
)
|
| 190 |
|
| 191 |
height = gr.Slider(
|
|
|
|
| 193 |
minimum=256,
|
| 194 |
maximum=MAX_IMAGE_SIZE,
|
| 195 |
step=32,
|
| 196 |
+
value=1216,
|
| 197 |
)
|
| 198 |
|
| 199 |
with gr.Row():
|
|
|
|
| 201 |
guidance_scale = gr.Slider(
|
| 202 |
label="Guidance scale",
|
| 203 |
minimum=0.0,
|
| 204 |
+
maximum=30.0,
|
| 205 |
step=0.1,
|
| 206 |
+
value=7.0,
|
| 207 |
)
|
| 208 |
|
| 209 |
num_inference_steps = gr.Slider(
|
| 210 |
label="Number of inference steps",
|
| 211 |
minimum=1,
|
| 212 |
+
maximum=100,
|
| 213 |
step=1,
|
| 214 |
+
value=76,
|
| 215 |
)
|
| 216 |
+
|
| 217 |
+
concurrency_gui = gr.Slider(
|
| 218 |
+
label="Number of steps to show the next preview image",
|
| 219 |
+
minimum=1,
|
| 220 |
+
maximum=20,
|
| 221 |
+
step=1,
|
| 222 |
+
value=3,
|
| 223 |
+
)
|
| 224 |
|
| 225 |
run_button.click(
|
| 226 |
fn = infer,
|
| 227 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency_gui],
|
| 228 |
+
outputs = [result],
|
| 229 |
+
show_progress="minimal",
|
| 230 |
)
|
| 231 |
|
| 232 |
demo.queue().launch()
|